Matches in SemOpenAlex for { <https://semopenalex.org/work/W2172970791> ?p ?o ?g. }
- W2172970791 endingPage "2484" @default.
- W2172970791 startingPage "2469" @default.
- W2172970791 abstract "Observations of wind profiles within the tropical cyclone boundary layer have until recently been quite rare. The recent massive increase in observations due to the operational implementation of the global positioning system dropwindsonde has emphasised that a low-level wind speed maximum is a common feature of the tropical cyclone boundary layer. Here is proposed a mechanism for producing such a maximum, whereby strong inward advection of angular momentum generates the supergradient flow. The processes that maintain the necessary inflow against the outward acceleration resulting from gradient wind imbalance are identified as being (i) vertical diffusion, (ii) vertical advection, and (iii) horizontal advection. Two complementary tools are used to diagnose the properties and dynamics of the jet. The first, presented here, is a linear analytical model of the boundary layer flow in a translating tropical cyclone. It is an extension of the classical Ekman boundary layer model, as well as of earlier work on stationary vortex boundary layers. This simplifies the vertical diffusion, omits the vertical advection, and linearizes the horizontal advection. The solution is shown to have three components, a symmetric one due to the cyclone, and two asymmetric ones that result from the interaction of the moving cyclone with the earth's surface. The asymmetric components are shown to be equivalent to a frictionally stalled inertia wave. It is argued that an Ekman-type model may be appropriate in tropical cyclones since diurnal effects are weak or absent, turbulence is dominantly shear-generated, and baroclinicity is weak. The jet is similar to the supergeostrophic flow found at the top of the classical Ekman spiral. It is only a few percent supergradient in the linear model, although it is shown that the neglect of vertical advection substantially reduces the strength. The jet height scales as (2K/I)1/2, where K is the turbulent diffusivity and I the inertial stability, modulated by a function of a dimensionless parameter. It is typically several hundreds of meters in the cyclone core, and increases with radius. In a moving storm, the jet is most supergradient—several times stronger than in a stationary storm—at the eyewall to the left and front of the storm (in the Northern Hemisphere), as well as extending into a significant area around to the left of the storm. It is, however, much less marked to the right, where the strongest near-surface winds are found. The factor for reducing upper winds to a near-surface equivalent, which is frequently used in operational work, is shown to have a substantial spatial variability. Larger values are found near the eye, due to the symmetric component of the solution. There is also a marked overall increase from right to left of the storm in the Northern Hemisphere. The second tool used to diagnose the jet, to be presented in Part II of this paper, is a high-resolution, dry, hydrostatic, numerical model using the full set of primitive equations. It therefore includes those terms omitted in the linear model, and will be seen to produce a markedly stronger jet, more consistent with the observations." @default.
- W2172970791 created "2016-06-24" @default.
- W2172970791 creator A5066247480 @default.
- W2172970791 date "2001-09-01" @default.
- W2172970791 modified "2023-10-18" @default.
- W2172970791 title "The Dynamics of Boundary Layer Jets within the Tropical Cyclone Core. Part I: Linear Theory" @default.
- W2172970791 cites W1965668452 @default.
- W2172970791 cites W1966100223 @default.
- W2172970791 cites W1975205672 @default.
- W2172970791 cites W1975546201 @default.
- W2172970791 cites W1981341609 @default.
- W2172970791 cites W1991922597 @default.
- W2172970791 cites W1992173980 @default.
- W2172970791 cites W1992871418 @default.
- W2172970791 cites W1993412011 @default.
- W2172970791 cites W2011548704 @default.
- W2172970791 cites W2013462453 @default.
- W2172970791 cites W2025506259 @default.
- W2172970791 cites W2038495195 @default.
- W2172970791 cites W2039752844 @default.
- W2172970791 cites W2045049195 @default.
- W2172970791 cites W2052202332 @default.
- W2172970791 cites W2058740778 @default.
- W2172970791 cites W2060411283 @default.
- W2172970791 cites W2060779138 @default.
- W2172970791 cites W2063837184 @default.
- W2172970791 cites W2065415696 @default.
- W2172970791 cites W2066694331 @default.
- W2172970791 cites W2068468354 @default.
- W2172970791 cites W2069960742 @default.
- W2172970791 cites W2088752521 @default.
- W2172970791 cites W2122559342 @default.
- W2172970791 cites W2123213104 @default.
- W2172970791 cites W2172682295 @default.
- W2172970791 cites W2173951127 @default.
- W2172970791 cites W2174075503 @default.
- W2172970791 cites W2174826757 @default.
- W2172970791 cites W2175675483 @default.
- W2172970791 cites W2176328291 @default.
- W2172970791 cites W2180016018 @default.
- W2172970791 cites W2180336072 @default.
- W2172970791 cites W2598575790 @default.
- W2172970791 cites W2888504372 @default.
- W2172970791 cites W4230322541 @default.
- W2172970791 cites W4230718449 @default.
- W2172970791 cites W4242937386 @default.
- W2172970791 cites W95617867 @default.
- W2172970791 doi "https://doi.org/10.1175/1520-0469(2001)058<2469:tdoblj>2.0.co;2" @default.
- W2172970791 hasPublicationYear "2001" @default.
- W2172970791 type Work @default.
- W2172970791 sameAs 2172970791 @default.
- W2172970791 citedByCount "263" @default.
- W2172970791 countsByYear W21729707912012 @default.
- W2172970791 countsByYear W21729707912013 @default.
- W2172970791 countsByYear W21729707912014 @default.
- W2172970791 countsByYear W21729707912015 @default.
- W2172970791 countsByYear W21729707912016 @default.
- W2172970791 countsByYear W21729707912017 @default.
- W2172970791 countsByYear W21729707912018 @default.
- W2172970791 countsByYear W21729707912019 @default.
- W2172970791 countsByYear W21729707912020 @default.
- W2172970791 countsByYear W21729707912021 @default.
- W2172970791 countsByYear W21729707912022 @default.
- W2172970791 countsByYear W21729707912023 @default.
- W2172970791 crossrefType "journal-article" @default.
- W2172970791 hasAuthorship W2172970791A5066247480 @default.
- W2172970791 hasBestOaLocation W21729707911 @default.
- W2172970791 hasConcept C111603439 @default.
- W2172970791 hasConcept C121332964 @default.
- W2172970791 hasConcept C127313418 @default.
- W2172970791 hasConcept C140820882 @default.
- W2172970791 hasConcept C153294291 @default.
- W2172970791 hasConcept C29141058 @default.
- W2172970791 hasConcept C5072599 @default.
- W2172970791 hasConcept C53631411 @default.
- W2172970791 hasConcept C57879066 @default.
- W2172970791 hasConcept C86338904 @default.
- W2172970791 hasConcept C93139939 @default.
- W2172970791 hasConcept C97355855 @default.
- W2172970791 hasConceptScore W2172970791C111603439 @default.
- W2172970791 hasConceptScore W2172970791C121332964 @default.
- W2172970791 hasConceptScore W2172970791C127313418 @default.
- W2172970791 hasConceptScore W2172970791C140820882 @default.
- W2172970791 hasConceptScore W2172970791C153294291 @default.
- W2172970791 hasConceptScore W2172970791C29141058 @default.
- W2172970791 hasConceptScore W2172970791C5072599 @default.
- W2172970791 hasConceptScore W2172970791C53631411 @default.
- W2172970791 hasConceptScore W2172970791C57879066 @default.
- W2172970791 hasConceptScore W2172970791C86338904 @default.
- W2172970791 hasConceptScore W2172970791C93139939 @default.
- W2172970791 hasConceptScore W2172970791C97355855 @default.
- W2172970791 hasIssue "17" @default.
- W2172970791 hasLocation W21729707911 @default.
- W2172970791 hasLocation W21729707912 @default.
- W2172970791 hasOpenAccess W2172970791 @default.
- W2172970791 hasPrimaryLocation W21729707911 @default.
- W2172970791 hasRelatedWork W1967883990 @default.
- W2172970791 hasRelatedWork W1984417966 @default.