Matches in SemOpenAlex for { <https://semopenalex.org/work/W2174148752> ?p ?o ?g. }
- W2174148752 endingPage "13" @default.
- W2174148752 startingPage "1" @default.
- W2174148752 abstract "Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS) and an artificial neural network (ANN) model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models." @default.
- W2174148752 created "2016-06-24" @default.
- W2174148752 creator A5009419336 @default.
- W2174148752 creator A5011455917 @default.
- W2174148752 creator A5018352609 @default.
- W2174148752 creator A5022946910 @default.
- W2174148752 creator A5029572706 @default.
- W2174148752 creator A5031416859 @default.
- W2174148752 creator A5045202522 @default.
- W2174148752 creator A5072745934 @default.
- W2174148752 date "2015-01-01" @default.
- W2174148752 modified "2023-10-15" @default.
- W2174148752 title "Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS" @default.
- W2174148752 cites W1965513101 @default.
- W2174148752 cites W1969391747 @default.
- W2174148752 cites W1969399508 @default.
- W2174148752 cites W1974250802 @default.
- W2174148752 cites W1982356910 @default.
- W2174148752 cites W1983211566 @default.
- W2174148752 cites W1994904501 @default.
- W2174148752 cites W1996580130 @default.
- W2174148752 cites W1998808712 @default.
- W2174148752 cites W2001676017 @default.
- W2174148752 cites W2004445488 @default.
- W2174148752 cites W2004630602 @default.
- W2174148752 cites W2008855189 @default.
- W2174148752 cites W2009203913 @default.
- W2174148752 cites W2012316969 @default.
- W2174148752 cites W2017587036 @default.
- W2174148752 cites W2023756471 @default.
- W2174148752 cites W2025590911 @default.
- W2174148752 cites W2028070629 @default.
- W2174148752 cites W2029447055 @default.
- W2174148752 cites W2033344643 @default.
- W2174148752 cites W2034342537 @default.
- W2174148752 cites W2039581585 @default.
- W2174148752 cites W2041534329 @default.
- W2174148752 cites W2044902638 @default.
- W2174148752 cites W2046738003 @default.
- W2174148752 cites W2052075521 @default.
- W2174148752 cites W2064184542 @default.
- W2174148752 cites W2064945237 @default.
- W2174148752 cites W2070761092 @default.
- W2174148752 cites W2076579537 @default.
- W2174148752 cites W2079928863 @default.
- W2174148752 cites W2081060554 @default.
- W2174148752 cites W2083059431 @default.
- W2174148752 cites W2116422023 @default.
- W2174148752 cites W2124591609 @default.
- W2174148752 cites W2158260560 @default.
- W2174148752 cites W2163648207 @default.
- W2174148752 cites W2165313910 @default.
- W2174148752 cites W2170241183 @default.
- W2174148752 cites W2170856142 @default.
- W2174148752 cites W2172147742 @default.
- W2174148752 cites W3017323153 @default.
- W2174148752 cites W3018770027 @default.
- W2174148752 cites W603988144 @default.
- W2174148752 doi "https://doi.org/10.1155/2015/742138" @default.
- W2174148752 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4670882" @default.
- W2174148752 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26759830" @default.
- W2174148752 hasPublicationYear "2015" @default.
- W2174148752 type Work @default.
- W2174148752 sameAs 2174148752 @default.
- W2174148752 citedByCount "33" @default.
- W2174148752 countsByYear W21741487522017 @default.
- W2174148752 countsByYear W21741487522018 @default.
- W2174148752 countsByYear W21741487522019 @default.
- W2174148752 countsByYear W21741487522020 @default.
- W2174148752 countsByYear W21741487522021 @default.
- W2174148752 countsByYear W21741487522022 @default.
- W2174148752 countsByYear W21741487522023 @default.
- W2174148752 crossrefType "journal-article" @default.
- W2174148752 hasAuthorship W2174148752A5009419336 @default.
- W2174148752 hasAuthorship W2174148752A5011455917 @default.
- W2174148752 hasAuthorship W2174148752A5018352609 @default.
- W2174148752 hasAuthorship W2174148752A5022946910 @default.
- W2174148752 hasAuthorship W2174148752A5029572706 @default.
- W2174148752 hasAuthorship W2174148752A5031416859 @default.
- W2174148752 hasAuthorship W2174148752A5045202522 @default.
- W2174148752 hasAuthorship W2174148752A5072745934 @default.
- W2174148752 hasBestOaLocation W21741487521 @default.
- W2174148752 hasConcept C118518473 @default.
- W2174148752 hasConcept C124101348 @default.
- W2174148752 hasConcept C127313418 @default.
- W2174148752 hasConcept C140073362 @default.
- W2174148752 hasConcept C154945302 @default.
- W2174148752 hasConcept C186108316 @default.
- W2174148752 hasConcept C187320778 @default.
- W2174148752 hasConcept C18903297 @default.
- W2174148752 hasConcept C195975749 @default.
- W2174148752 hasConcept C2776214188 @default.
- W2174148752 hasConcept C2988105877 @default.
- W2174148752 hasConcept C2993807900 @default.
- W2174148752 hasConcept C39432304 @default.
- W2174148752 hasConcept C39769621 @default.
- W2174148752 hasConcept C41008148 @default.
- W2174148752 hasConcept C45235069 @default.