Matches in SemOpenAlex for { <https://semopenalex.org/work/W2174154458> ?p ?o ?g. }
- W2174154458 abstract "Abstract By combining Haar wavelets with Bayesian Hidden Markov Models, we improve detection of genomic copy number variants (CNV) in array CGH experiments compared to the state-of-the-art, including standard Gibbs sampling. At the same time, we achieve drastically reduced running times, as the method concentrates computational effort on chromosomal segments which are difficult to call, by dynamically and adaptively recomputing consecutive blocks of observations likely to share a copy number. This makes routine diagnostic use and re-analysis of legacy data collections feasible; to this end, we also propose an effective automatic prior. An open source software implementation of our method is available at http://bioinformatics.rutgers.edu/Software/HaMMLET/ . The web supplement is at http://bioinformatics.rutgers.edu/Supplements/HaMMLET/ . Author Summary Identifying large-scale genome deletions and duplications, or copy number variants (CNV), accurately in populations or individual patients is a crucial step in indicating disease factors or diagnosing an individual patient's disease type. Hidden Markov Models (HMM) are a type of statistical model widely used for CNV detection, as well as other biological applications such as the analysis of gene expression time course data or the analysis of discrete-valued DNA and protein sequences. As with many statistical models, there are two fundamentally different inference approaches. In the frequentist framework, a single estimate of the model parameters would be used as a basis for subsequent inference, making the identification of CNV dependent on the quality of that estimate. This is an acute problem for HMM as methods for finding globally optimal parameters are not known. Alternatively, one can use a Bayesian approach and integrate over all possible parameter choices. While the latter is known to lead to significantly better results, the much—up to hundreds of times—larger computational effort prevents wide adaptation so far. Our proposed method addresses this by combining Haar wavelets and HMM. We greatly accelerate fully Bayesian HMMs, while simultaneously increasing convergence and thus the accuracy of the Gibbs sampler used for Bayesian computations, leading to substantial improvements over the state-of-the-art." @default.
- W2174154458 created "2016-06-24" @default.
- W2174154458 creator A5054271799 @default.
- W2174154458 creator A5057266594 @default.
- W2174154458 creator A5087136857 @default.
- W2174154458 date "2015-07-31" @default.
- W2174154458 modified "2023-09-25" @default.
- W2174154458 title "Fast Bayesian Inference of Copy Number Variants using Hidden Markov Models with Wavelet Compression" @default.
- W2174154458 cites W1481143593 @default.
- W2174154458 cites W1488591768 @default.
- W2174154458 cites W1520880567 @default.
- W2174154458 cites W1539673959 @default.
- W2174154458 cites W1559451312 @default.
- W2174154458 cites W1559899545 @default.
- W2174154458 cites W1853214607 @default.
- W2174154458 cites W1964123743 @default.
- W2174154458 cites W1966938977 @default.
- W2174154458 cites W1971321176 @default.
- W2174154458 cites W1974107857 @default.
- W2174154458 cites W1980149518 @default.
- W2174154458 cites W1986830331 @default.
- W2174154458 cites W1991133427 @default.
- W2174154458 cites W1994381110 @default.
- W2174154458 cites W1994930469 @default.
- W2174154458 cites W2007321142 @default.
- W2174154458 cites W2012716786 @default.
- W2174154458 cites W2013249386 @default.
- W2174154458 cites W2015986408 @default.
- W2174154458 cites W2016299037 @default.
- W2174154458 cites W2017535462 @default.
- W2174154458 cites W2031314447 @default.
- W2174154458 cites W2031538820 @default.
- W2174154458 cites W2033484654 @default.
- W2174154458 cites W2046101087 @default.
- W2174154458 cites W2048149106 @default.
- W2174154458 cites W2049446938 @default.
- W2174154458 cites W2054038204 @default.
- W2174154458 cites W2062994827 @default.
- W2174154458 cites W2065506151 @default.
- W2174154458 cites W2066721762 @default.
- W2174154458 cites W2074579392 @default.
- W2174154458 cites W2080920780 @default.
- W2174154458 cites W2083283348 @default.
- W2174154458 cites W2083985952 @default.
- W2174154458 cites W2084591827 @default.
- W2174154458 cites W2084825829 @default.
- W2174154458 cites W2085755265 @default.
- W2174154458 cites W2096318664 @default.
- W2174154458 cites W2097310492 @default.
- W2174154458 cites W2097496987 @default.
- W2174154458 cites W2100725331 @default.
- W2174154458 cites W2103569192 @default.
- W2174154458 cites W2110227850 @default.
- W2174154458 cites W2112582023 @default.
- W2174154458 cites W2113574907 @default.
- W2174154458 cites W2116753165 @default.
- W2174154458 cites W2119017402 @default.
- W2174154458 cites W2119274764 @default.
- W2174154458 cites W2124873881 @default.
- W2174154458 cites W2125838338 @default.
- W2174154458 cites W2127710810 @default.
- W2174154458 cites W2129766055 @default.
- W2174154458 cites W2131057697 @default.
- W2174154458 cites W2132984323 @default.
- W2174154458 cites W2133174470 @default.
- W2174154458 cites W2134672574 @default.
- W2174154458 cites W2142384583 @default.
- W2174154458 cites W2146408744 @default.
- W2174154458 cites W2148133654 @default.
- W2174154458 cites W2151595196 @default.
- W2174154458 cites W2152265091 @default.
- W2174154458 cites W2154361640 @default.
- W2174154458 cites W2155677754 @default.
- W2174154458 cites W2155925153 @default.
- W2174154458 cites W2158392984 @default.
- W2174154458 cites W2158940042 @default.
- W2174154458 cites W2165170334 @default.
- W2174154458 cites W2168730720 @default.
- W2174154458 cites W2171326838 @default.
- W2174154458 cites W2171844034 @default.
- W2174154458 cites W2491159019 @default.
- W2174154458 cites W4230257499 @default.
- W2174154458 cites W4253016408 @default.
- W2174154458 cites W4255272544 @default.
- W2174154458 cites W86309964 @default.
- W2174154458 doi "https://doi.org/10.1101/023705" @default.
- W2174154458 hasPublicationYear "2015" @default.
- W2174154458 type Work @default.
- W2174154458 sameAs 2174154458 @default.
- W2174154458 citedByCount "0" @default.
- W2174154458 crossrefType "posted-content" @default.
- W2174154458 hasAuthorship W2174154458A5054271799 @default.
- W2174154458 hasAuthorship W2174154458A5057266594 @default.
- W2174154458 hasAuthorship W2174154458A5087136857 @default.
- W2174154458 hasBestOaLocation W21741544581 @default.
- W2174154458 hasConcept C107673813 @default.
- W2174154458 hasConcept C111350023 @default.
- W2174154458 hasConcept C124101348 @default.
- W2174154458 hasConcept C154945302 @default.
- W2174154458 hasConcept C158424031 @default.