Matches in SemOpenAlex for { <https://semopenalex.org/work/W2174200599> ?p ?o ?g. }
- W2174200599 endingPage "16" @default.
- W2174200599 startingPage "1" @default.
- W2174200599 abstract "The internal evolution of the Varuträsk rare-element pegmatite (Skellefte District, Northern Sweden) has been investigated using stable isotope (B, H, O) geochemistry of tourmaline and coexisting micas, feldspar and quartz. Varuträsk is a classic and typical example of highly fractionated LCT-type pegmatites, with a pronounced concentric zoning pattern composed of well-developed border, wall and intermediate zones and a quartz core. The pegmatite displays considerable rare-element enrichment, culminating in the formation of albite-lepidolite and pollucite units in the innermost zones. Major and trace element variations in tourmaline from the main pegmatite zones correlate well with the internal zoning pattern. Mineral compositions record an abrupt change in fractionation trends between the barren outer and intermediate zones and the inner, late-stage assemblages that carry rare-element mineralization. This change is also shown by the B-isotope variations of tourmaline. Early and mid-stage tourmalines record a systematic increase in δ11B from − 14.6‰ to − 6.2‰ which can be explained by closed-system melt-mineral isotope fractionation whereby crystallization of large amounts of muscovite preferentially removes 10B from the residual melt. In contrast, tourmaline from late-stage assemblages in the inner zones and cross-cutting veinlets shows a reversal in the B isotope trend, with a decrease in δ11B from − 8‰ to − 14.1‰. This reversal cannot be explained by mineral-melt isotope fractionation, but requires fluid-melt partitioning and partial fluid loss. Hydrogen isotope variations in mica support this model. The systematic increase in δD from − 75‰ in the outer zones (muscovite) to − 63‰ and − 53‰ in the inner zones (Li-micas) cannot be explained by closed-system variations in temperature or melt-mica fractionation, but it is consistent with late fluid exsolution. Oxygen isotope compositions of tourmaline (δ18O from 9.7‰ to 11.6‰), quartz (13.3‰ to 14‰) and mica (10.3‰ to 11.3‰) show good agreement with equilibrium partitioning and yield temperatures in the range 450 °C to 600 °C. Combining this with the stability fields of Li-aluminosilicates petalite and spodumene indicates crystallization pressures of 2–3 kbar. Taken together, the stable isotope and mineral chemistry data demonstrate that rare-element enrichment in the innermost fractionated assemblages in the Varuträsk pegmatite was associated with the transition from purely magmatic crystallization to conditions where a separate aqueous fluid phase became important." @default.
- W2174200599 created "2016-06-24" @default.
- W2174200599 creator A5000042821 @default.
- W2174200599 creator A5008815202 @default.
- W2174200599 creator A5019661389 @default.
- W2174200599 creator A5021329352 @default.
- W2174200599 creator A5024299583 @default.
- W2174200599 creator A5025023328 @default.
- W2174200599 creator A5062413478 @default.
- W2174200599 date "2016-02-01" @default.
- W2174200599 modified "2023-10-14" @default.
- W2174200599 title "Stable isotope (B, H, O) and mineral-chemistry constraints on the magmatic to hydrothermal evolution of the Varuträsk rare-element pegmatite (Northern Sweden)" @default.
- W2174200599 cites W1861818323 @default.
- W2174200599 cites W1914582446 @default.
- W2174200599 cites W1966638191 @default.
- W2174200599 cites W1967376731 @default.
- W2174200599 cites W1968187857 @default.
- W2174200599 cites W1970889781 @default.
- W2174200599 cites W1975136610 @default.
- W2174200599 cites W1979634508 @default.
- W2174200599 cites W1980333019 @default.
- W2174200599 cites W1983113771 @default.
- W2174200599 cites W1985515464 @default.
- W2174200599 cites W1985635375 @default.
- W2174200599 cites W1985843414 @default.
- W2174200599 cites W1991991917 @default.
- W2174200599 cites W1995836922 @default.
- W2174200599 cites W2000272657 @default.
- W2174200599 cites W2000301117 @default.
- W2174200599 cites W2000886616 @default.
- W2174200599 cites W2001514129 @default.
- W2174200599 cites W2002300074 @default.
- W2174200599 cites W2011405636 @default.
- W2174200599 cites W2014541757 @default.
- W2174200599 cites W2014745983 @default.
- W2174200599 cites W2017353146 @default.
- W2174200599 cites W2019922981 @default.
- W2174200599 cites W2024304865 @default.
- W2174200599 cites W2026923685 @default.
- W2174200599 cites W2027382299 @default.
- W2174200599 cites W2028401168 @default.
- W2174200599 cites W2029727465 @default.
- W2174200599 cites W2030332639 @default.
- W2174200599 cites W2031770668 @default.
- W2174200599 cites W2036340920 @default.
- W2174200599 cites W2036721347 @default.
- W2174200599 cites W2038380178 @default.
- W2174200599 cites W2041374831 @default.
- W2174200599 cites W2045575225 @default.
- W2174200599 cites W2045986371 @default.
- W2174200599 cites W2048251070 @default.
- W2174200599 cites W2049366175 @default.
- W2174200599 cites W2052001678 @default.
- W2174200599 cites W2056945678 @default.
- W2174200599 cites W2056994161 @default.
- W2174200599 cites W2060855340 @default.
- W2174200599 cites W2068867007 @default.
- W2174200599 cites W2071353385 @default.
- W2174200599 cites W2073749810 @default.
- W2174200599 cites W2074041658 @default.
- W2174200599 cites W2082533626 @default.
- W2174200599 cites W2085788045 @default.
- W2174200599 cites W2086663810 @default.
- W2174200599 cites W2087035217 @default.
- W2174200599 cites W2087728229 @default.
- W2174200599 cites W2089030937 @default.
- W2174200599 cites W2089464762 @default.
- W2174200599 cites W2090757504 @default.
- W2174200599 cites W2093003188 @default.
- W2174200599 cites W2095483642 @default.
- W2174200599 cites W2099934776 @default.
- W2174200599 cites W2106769845 @default.
- W2174200599 cites W2107395756 @default.
- W2174200599 cites W2123142216 @default.
- W2174200599 cites W2133678589 @default.
- W2174200599 cites W2136231821 @default.
- W2174200599 cites W2138769772 @default.
- W2174200599 cites W2141849948 @default.
- W2174200599 cites W2154804984 @default.
- W2174200599 cites W2164546497 @default.
- W2174200599 cites W2165976294 @default.
- W2174200599 cites W2295211449 @default.
- W2174200599 cites W2319146553 @default.
- W2174200599 cites W2319391012 @default.
- W2174200599 cites W2319607515 @default.
- W2174200599 cites W2328605559 @default.
- W2174200599 cites W2331011456 @default.
- W2174200599 cites W2335657501 @default.
- W2174200599 cites W2336452864 @default.
- W2174200599 cites W2339817543 @default.
- W2174200599 cites W2341404763 @default.
- W2174200599 doi "https://doi.org/10.1016/j.chemgeo.2015.11.025" @default.
- W2174200599 hasPublicationYear "2016" @default.
- W2174200599 type Work @default.
- W2174200599 sameAs 2174200599 @default.
- W2174200599 citedByCount "48" @default.
- W2174200599 countsByYear W21742005992017 @default.
- W2174200599 countsByYear W21742005992018 @default.