Matches in SemOpenAlex for { <https://semopenalex.org/work/W2174210018> ?p ?o ?g. }
- W2174210018 abstract "ABSTRACT Chlorinated isocyanuric acids are widely used water disinfectants that generate hypochlorite, but with repeated application, they build up cyanuric acid (CYA) that must be removed to maintain disinfection. 3-Aminopropyltriethoxysilane (APTES)-treated Escherichia coli cells expressing cyanuric acid hydrolase (CAH) from Moorella thermoacetica exhibited significantly high CYA degradation rates and provided protection against enzyme inactivation by hypochlorite (chlorine). APTES coating or encapsulation of cells had two benefits: (i) overcoming diffusion limitations imposed by the cell wall and (ii) protecting against hypochlorite inactivation of CAH activity. Cells encapsulated in APTES gels degraded CYA three times faster than nonfunctionalized tetraethoxysilane (TEOS) gels, and cells coated with APTES degraded CYA at a rate of 29 µmol/min per mg of CAH protein, similar to the rate with purified enzyme. UV spectroscopy, fluorescence spectroscopy, and scanning electron microscopy showed that the higher rates were due to APTES increasing membrane permeability and enhancing cyanuric acid diffusion into the cytoplasm to reach the CAH enzyme. Purified CAH enzyme was shown to be rapidly inactivated by hypochlorite. APTES aggregates surrounding cells protected via the amine groups reacting with hypochlorite as shown by pH changes, zeta potential measurements, and infrared spectroscopy. APTES-encapsulated E. coli cells expressing CAH degraded cyanuric acid at high rates in the presence of 1 to 10 ppm hypochlorite, showing effectiveness under swimming pool conditions. In contrast, CAH activity in TEOS gels or free cells was completely inactivated by hypochlorite. These studies show that commercially available silica materials can selectively enhance, protect, and immobilize whole-cell biocatalysts for specialized applications. IMPORTANCE Hypochlorite is used in vast quantities for water disinfection, killing bacteria on surfaces, and washing and whitening. In pools, spas, and other waters, hypochlorite is frequently delivered as chlorinated isocyanuric acids that release hypochlorite and cyanuric acid. Over time, cyanuric acid accumulates and impairs disinfection and must be removed. The microbial enzyme cyanuric acid hydrolase can potentially remove cyanuric acid to restore disinfection and protect swimmers. Whole bacterial cells expressing cyanuric acid hydrolase were encapsulated in an inert silica matrix containing an amine group. The amine group serves to permeabilize the cell membrane and accelerate cyanuric acid degradation, and it also reacts with hypochlorite to protect against inactivation of cyanuric acid hydrolase. Methods for promoting whole-cell biocatalysis are important in biotechnology, and the present work illustrates approaches to enhance rates and protect against an inhibitory substance." @default.
- W2174210018 created "2016-06-24" @default.
- W2174210018 creator A5033633872 @default.
- W2174210018 creator A5033812595 @default.
- W2174210018 creator A5051459110 @default.
- W2174210018 creator A5054046029 @default.
- W2174210018 date "2015-12-31" @default.
- W2174210018 modified "2023-10-11" @default.
- W2174210018 title "Silica Gel for Enhanced Activity and Hypochlorite Protection of Cyanuric Acid Hydrolase in Recombinant Escherichia coli" @default.
- W2174210018 cites W1614377092 @default.
- W2174210018 cites W162989769 @default.
- W2174210018 cites W1691375843 @default.
- W2174210018 cites W1816111003 @default.
- W2174210018 cites W1840720299 @default.
- W2174210018 cites W1970973269 @default.
- W2174210018 cites W1985565843 @default.
- W2174210018 cites W1997371123 @default.
- W2174210018 cites W2000690699 @default.
- W2174210018 cites W2009675871 @default.
- W2174210018 cites W2017925508 @default.
- W2174210018 cites W2021061317 @default.
- W2174210018 cites W2027289720 @default.
- W2174210018 cites W2030159437 @default.
- W2174210018 cites W2033968078 @default.
- W2174210018 cites W2044468923 @default.
- W2174210018 cites W2045931154 @default.
- W2174210018 cites W2066183108 @default.
- W2174210018 cites W2071104550 @default.
- W2174210018 cites W2072639579 @default.
- W2174210018 cites W2076846032 @default.
- W2174210018 cites W2083932962 @default.
- W2174210018 cites W2085525548 @default.
- W2174210018 cites W2094498700 @default.
- W2174210018 cites W2094825003 @default.
- W2174210018 cites W2096758610 @default.
- W2174210018 cites W2101621191 @default.
- W2174210018 cites W2107225914 @default.
- W2174210018 cites W2107415749 @default.
- W2174210018 cites W2107965727 @default.
- W2174210018 cites W2108221116 @default.
- W2174210018 cites W2118076821 @default.
- W2174210018 cites W2125255744 @default.
- W2174210018 cites W2132684936 @default.
- W2174210018 cites W2140134613 @default.
- W2174210018 cites W2155157016 @default.
- W2174210018 cites W2164679906 @default.
- W2174210018 cites W2314530439 @default.
- W2174210018 cites W2399519824 @default.
- W2174210018 doi "https://doi.org/10.1128/mbio.01477-15" @default.
- W2174210018 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4631802" @default.
- W2174210018 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26530383" @default.
- W2174210018 hasPublicationYear "2015" @default.
- W2174210018 type Work @default.
- W2174210018 sameAs 2174210018 @default.
- W2174210018 citedByCount "11" @default.
- W2174210018 countsByYear W21742100182016 @default.
- W2174210018 countsByYear W21742100182017 @default.
- W2174210018 countsByYear W21742100182018 @default.
- W2174210018 countsByYear W21742100182020 @default.
- W2174210018 countsByYear W21742100182021 @default.
- W2174210018 countsByYear W21742100182023 @default.
- W2174210018 crossrefType "journal-article" @default.
- W2174210018 hasAuthorship W2174210018A5033633872 @default.
- W2174210018 hasAuthorship W2174210018A5033812595 @default.
- W2174210018 hasAuthorship W2174210018A5051459110 @default.
- W2174210018 hasAuthorship W2174210018A5054046029 @default.
- W2174210018 hasBestOaLocation W21742100181 @default.
- W2174210018 hasConcept C13965031 @default.
- W2174210018 hasConcept C155672457 @default.
- W2174210018 hasConcept C171250308 @default.
- W2174210018 hasConcept C178790620 @default.
- W2174210018 hasConcept C181199279 @default.
- W2174210018 hasConcept C185592680 @default.
- W2174210018 hasConcept C192562407 @default.
- W2174210018 hasConcept C2775979504 @default.
- W2174210018 hasConcept C2776776456 @default.
- W2174210018 hasConcept C2776832558 @default.
- W2174210018 hasConcept C2777683982 @default.
- W2174210018 hasConcept C2780908991 @default.
- W2174210018 hasConcept C43617362 @default.
- W2174210018 hasConcept C505241676 @default.
- W2174210018 hasConcept C55493867 @default.
- W2174210018 hasConcept C86181022 @default.
- W2174210018 hasConceptScore W2174210018C13965031 @default.
- W2174210018 hasConceptScore W2174210018C155672457 @default.
- W2174210018 hasConceptScore W2174210018C171250308 @default.
- W2174210018 hasConceptScore W2174210018C178790620 @default.
- W2174210018 hasConceptScore W2174210018C181199279 @default.
- W2174210018 hasConceptScore W2174210018C185592680 @default.
- W2174210018 hasConceptScore W2174210018C192562407 @default.
- W2174210018 hasConceptScore W2174210018C2775979504 @default.
- W2174210018 hasConceptScore W2174210018C2776776456 @default.
- W2174210018 hasConceptScore W2174210018C2776832558 @default.
- W2174210018 hasConceptScore W2174210018C2777683982 @default.
- W2174210018 hasConceptScore W2174210018C2780908991 @default.
- W2174210018 hasConceptScore W2174210018C43617362 @default.
- W2174210018 hasConceptScore W2174210018C505241676 @default.
- W2174210018 hasConceptScore W2174210018C55493867 @default.
- W2174210018 hasConceptScore W2174210018C86181022 @default.
- W2174210018 hasIssue "6" @default.