Matches in SemOpenAlex for { <https://semopenalex.org/work/W2174335055> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2174335055 abstract "Probabilistic graphical models offer a common conceptual architecture where biological and mathematical objects can be expressed with a common, intuitive formalism. This enables effective communication between scientists across the mathematical divide by fostering substantive debate in the context of a scientific problem, and ultimately facilitates the joint development of statistical and computational tools for quantitative data analysis. A number of success stories have appeared over the years [1–4]. Today, probabilistic graphical models promise to play a major role in the resolution of many intriguing conundrums in the biological sciences. The goal of this short article is to be a dense, informative introduction to the language of probabilistic graphical models, for beginners, with pointers to successful applications in selected areas of biology. The exposition introduces the essential concepts involved in PGMs in the context of the various stages of a typical collaboration between natural and computational scientists, and discusses the aspects to which each scientist should contribute to carry out the data analysis successfully using PGMs.Let us start by considering a specific problem in transcriptional regulation. Given measurements about the abundance of gene transcripts in retinal cells across stages of development, we would like to discover which functional processes are relevant for development, and reveal which ones are most important at which stage. To develop a PGM to address this problem, we begin by identifying the biological objects that would appear in a cartoon model of how cellular development impacts transcription. In this illustrative example, we have genes and functional processes/contexts. It is reasonable to assume that each gene will participate in multiple functional processes, although typically in a small number of them, and that not all functional processes will be important at all stages of development. We then assess what aspects of the problem we can probe directly, with experimental techniques, and what aspects we cannot. In the example, while an abundance of gene transcripts can be obtained, for instance, via SAGE (serial analysis of gene expression), it is harder to measure functional processes. However, the latter could be operationally defined as sets of genes that share a similar temporal regulation pattern; this definition has the advantage of creating a connection between membership of genes to functional processes (i.e., an unobservable mapping) and similarity of the temporal expression profiles (i.e., observable quantities). The establishment of connections between those biological objects that we can probe and those that we cannot ends a first conceptual effort.A cartoon model of how cellular development impacts transcription is now specified in terms of genes and their abundance, functional processes, and membership of genes to functional processes. Next we translate the biological players and the connections we established among them into mathematical quantities (i.e., random variables) and connections among them (i.e., statistical dependencies). This translation specifies the model structure. At this stage, we rely on biological intuitions to fine-tune the model, for instance, by deciding which sources of variability in the measurements carry information about the latent variables and which do not—if the temporal expression profiles of genes A and B are similar on a relative scale, but their absolute abundance is quite different, should we believe that they both participate in the same functional processes? Last, we assign numerical values to those quantities that are unknown in the final model specifications (i.e., we fit the model to the data) and we use them to develop biological intuitions in the context of the original problem. (Functional aspects of retinal development, in mouse, are fully addressed in [5].)In the following, we briefly introduce the basic mathematical quantities that enable the translation of a cartoon model of biology into a PGM, and we review strategies to assign numerical values to the unknown quantities underlying any PGM that are most likely given the observations. We conclude with an overview of selected applications, complete with pointers to published work." @default.
- W2174335055 created "2016-06-24" @default.
- W2174335055 creator A5035398709 @default.
- W2174335055 date "2010-02-22" @default.
- W2174335055 modified "2023-09-26" @default.
- W2174335055 title "Getting started in probabilistic graphical models" @default.
- W2174335055 hasPublicationYear "2010" @default.
- W2174335055 type Work @default.
- W2174335055 sameAs 2174335055 @default.
- W2174335055 citedByCount "6" @default.
- W2174335055 countsByYear W21743350552013 @default.
- W2174335055 countsByYear W21743350552014 @default.
- W2174335055 crossrefType "proceedings-article" @default.
- W2174335055 hasAuthorship W2174335055A5035398709 @default.
- W2174335055 hasConcept C114289077 @default.
- W2174335055 hasConcept C123657996 @default.
- W2174335055 hasConcept C124952713 @default.
- W2174335055 hasConcept C142362112 @default.
- W2174335055 hasConcept C151730666 @default.
- W2174335055 hasConcept C153349607 @default.
- W2174335055 hasConcept C154945302 @default.
- W2174335055 hasConcept C155846161 @default.
- W2174335055 hasConcept C15744967 @default.
- W2174335055 hasConcept C162763945 @default.
- W2174335055 hasConcept C188147891 @default.
- W2174335055 hasConcept C2522767166 @default.
- W2174335055 hasConcept C2776285698 @default.
- W2174335055 hasConcept C2779343474 @default.
- W2174335055 hasConcept C41008148 @default.
- W2174335055 hasConcept C49937458 @default.
- W2174335055 hasConcept C80444323 @default.
- W2174335055 hasConcept C86803240 @default.
- W2174335055 hasConceptScore W2174335055C114289077 @default.
- W2174335055 hasConceptScore W2174335055C123657996 @default.
- W2174335055 hasConceptScore W2174335055C124952713 @default.
- W2174335055 hasConceptScore W2174335055C142362112 @default.
- W2174335055 hasConceptScore W2174335055C151730666 @default.
- W2174335055 hasConceptScore W2174335055C153349607 @default.
- W2174335055 hasConceptScore W2174335055C154945302 @default.
- W2174335055 hasConceptScore W2174335055C155846161 @default.
- W2174335055 hasConceptScore W2174335055C15744967 @default.
- W2174335055 hasConceptScore W2174335055C162763945 @default.
- W2174335055 hasConceptScore W2174335055C188147891 @default.
- W2174335055 hasConceptScore W2174335055C2522767166 @default.
- W2174335055 hasConceptScore W2174335055C2776285698 @default.
- W2174335055 hasConceptScore W2174335055C2779343474 @default.
- W2174335055 hasConceptScore W2174335055C41008148 @default.
- W2174335055 hasConceptScore W2174335055C49937458 @default.
- W2174335055 hasConceptScore W2174335055C80444323 @default.
- W2174335055 hasConceptScore W2174335055C86803240 @default.
- W2174335055 hasLocation W21743350551 @default.
- W2174335055 hasOpenAccess W2174335055 @default.
- W2174335055 hasPrimaryLocation W21743350551 @default.
- W2174335055 hasRelatedWork W1715760388 @default.
- W2174335055 hasRelatedWork W177469414 @default.
- W2174335055 hasRelatedWork W1861020771 @default.
- W2174335055 hasRelatedWork W2010254114 @default.
- W2174335055 hasRelatedWork W2087185452 @default.
- W2174335055 hasRelatedWork W2088111026 @default.
- W2174335055 hasRelatedWork W2099150180 @default.
- W2174335055 hasRelatedWork W2159708050 @default.
- W2174335055 hasRelatedWork W2289935316 @default.
- W2174335055 hasRelatedWork W2295181068 @default.
- W2174335055 hasRelatedWork W2554824693 @default.
- W2174335055 hasRelatedWork W2947849253 @default.
- W2174335055 hasRelatedWork W2950613951 @default.
- W2174335055 hasRelatedWork W3000337389 @default.
- W2174335055 hasRelatedWork W3016898642 @default.
- W2174335055 hasRelatedWork W3047031122 @default.
- W2174335055 hasRelatedWork W3174409620 @default.
- W2174335055 hasRelatedWork W318457721 @default.
- W2174335055 hasRelatedWork W339644385 @default.
- W2174335055 hasRelatedWork W57460901 @default.
- W2174335055 isParatext "false" @default.
- W2174335055 isRetracted "false" @default.
- W2174335055 magId "2174335055" @default.
- W2174335055 workType "article" @default.