Matches in SemOpenAlex for { <https://semopenalex.org/work/W2174966165> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2174966165 endingPage "309" @default.
- W2174966165 startingPage "298" @default.
- W2174966165 abstract "Pedestrian flow parameters are analysed in this study considering linear and non-linear relationships between stream flow parameters using conventional and soft computing approach. Speed–density relationship serves as a fundamental relationship. Single-regime concepts and deterministic models like Greenshield and Underwood were applied in the study to describe bidirectional flow characteristics on sidewalks and carriageways around transport terminals in India. Artificial Neural Network (ANN) approach is also used for traffic flow modelling to build a relationship between different pedestrian flow parameters. A non-linear model based on ANN is suggested and compared with the other deterministic models. Out of the aforesaid models, ANN model demonstrated good results based on accuracy measurement. Also these ANN models have an advantage in terms of their self-processing and intelligent behaviour. Flow parameters are estimated by ANN model using MFD (Macroscopic Fundamental Diagram). Estimated mean absolute error (MAE) and root mean square error (RMSE) values for the best fitted ANN model are 3.83 and 4.73 m/min, respectively, less than those for the other models for sidewalk movement. Further estimated MAE and RMSE values of ANN model for carriageway movement are 4.02 and 4.98 m/min, respectively, which are comparatively less than those of the other models. ANN model gives better performance in fitness of model and future prediction of flow parameters. Also when using linear regression model between observed and estimated values for speed and flow parameters, performance of ANN model gives better fitness to predict data as compared to deterministic model. R value for speed data prediction is 0.756 and for flow data prediction is 0.997 using ANN model at sidewalk movement around transport terminal." @default.
- W2174966165 created "2016-06-24" @default.
- W2174966165 creator A5067154676 @default.
- W2174966165 creator A5088106735 @default.
- W2174966165 creator A5089334516 @default.
- W2174966165 date "2015-11-27" @default.
- W2174966165 modified "2023-09-25" @default.
- W2174966165 title "Analysis of interrelationship between pedestrian flow parameters using artificial neural network" @default.
- W2174966165 cites W1967531229 @default.
- W2174966165 cites W1977405947 @default.
- W2174966165 cites W2005040959 @default.
- W2174966165 cites W2010256389 @default.
- W2174966165 cites W2030290262 @default.
- W2174966165 cites W2084572538 @default.
- W2174966165 cites W2128956170 @default.
- W2174966165 cites W2143155058 @default.
- W2174966165 cites W2155371606 @default.
- W2174966165 cites W2163272476 @default.
- W2174966165 cites W2171600185 @default.
- W2174966165 cites W2186790807 @default.
- W2174966165 cites W4248090385 @default.
- W2174966165 doi "https://doi.org/10.1007/s40534-015-0088-9" @default.
- W2174966165 hasPublicationYear "2015" @default.
- W2174966165 type Work @default.
- W2174966165 sameAs 2174966165 @default.
- W2174966165 citedByCount "21" @default.
- W2174966165 countsByYear W21749661652018 @default.
- W2174966165 countsByYear W21749661652019 @default.
- W2174966165 countsByYear W21749661652020 @default.
- W2174966165 countsByYear W21749661652021 @default.
- W2174966165 countsByYear W21749661652022 @default.
- W2174966165 countsByYear W21749661652023 @default.
- W2174966165 crossrefType "journal-article" @default.
- W2174966165 hasAuthorship W2174966165A5067154676 @default.
- W2174966165 hasAuthorship W2174966165A5088106735 @default.
- W2174966165 hasAuthorship W2174966165A5089334516 @default.
- W2174966165 hasBestOaLocation W21749661651 @default.
- W2174966165 hasConcept C105795698 @default.
- W2174966165 hasConcept C122383733 @default.
- W2174966165 hasConcept C127413603 @default.
- W2174966165 hasConcept C139945424 @default.
- W2174966165 hasConcept C154945302 @default.
- W2174966165 hasConcept C2524010 @default.
- W2174966165 hasConcept C33923547 @default.
- W2174966165 hasConcept C38349280 @default.
- W2174966165 hasConcept C41008148 @default.
- W2174966165 hasConcept C44154836 @default.
- W2174966165 hasConcept C48921125 @default.
- W2174966165 hasConcept C50644808 @default.
- W2174966165 hasConceptScore W2174966165C105795698 @default.
- W2174966165 hasConceptScore W2174966165C122383733 @default.
- W2174966165 hasConceptScore W2174966165C127413603 @default.
- W2174966165 hasConceptScore W2174966165C139945424 @default.
- W2174966165 hasConceptScore W2174966165C154945302 @default.
- W2174966165 hasConceptScore W2174966165C2524010 @default.
- W2174966165 hasConceptScore W2174966165C33923547 @default.
- W2174966165 hasConceptScore W2174966165C38349280 @default.
- W2174966165 hasConceptScore W2174966165C41008148 @default.
- W2174966165 hasConceptScore W2174966165C44154836 @default.
- W2174966165 hasConceptScore W2174966165C48921125 @default.
- W2174966165 hasConceptScore W2174966165C50644808 @default.
- W2174966165 hasIssue "4" @default.
- W2174966165 hasLocation W21749661651 @default.
- W2174966165 hasOpenAccess W2174966165 @default.
- W2174966165 hasPrimaryLocation W21749661651 @default.
- W2174966165 hasRelatedWork W1894197435 @default.
- W2174966165 hasRelatedWork W2188032833 @default.
- W2174966165 hasRelatedWork W2348724894 @default.
- W2174966165 hasRelatedWork W2350894757 @default.
- W2174966165 hasRelatedWork W2395675490 @default.
- W2174966165 hasRelatedWork W2807954395 @default.
- W2174966165 hasRelatedWork W2943894916 @default.
- W2174966165 hasRelatedWork W3128923042 @default.
- W2174966165 hasRelatedWork W3135501522 @default.
- W2174966165 hasRelatedWork W3111430581 @default.
- W2174966165 hasVolume "23" @default.
- W2174966165 isParatext "false" @default.
- W2174966165 isRetracted "false" @default.
- W2174966165 magId "2174966165" @default.
- W2174966165 workType "article" @default.