Matches in SemOpenAlex for { <https://semopenalex.org/work/W2175287745> ?p ?o ?g. }
- W2175287745 endingPage "1567" @default.
- W2175287745 startingPage "1558" @default.
- W2175287745 abstract "DHS (District Heating System) is one of the most efficient technologies which has been used to meet residential thermal demand. In this study, the most accurate forecasting of the residential heating demand is investigated via soft computing method. The objective of this study is to obtain the most accurate prediction of the residential heating consumption to employ forecasting result for designing optimum DHS system as a possible substitute of a pipeline natural gas in BAHARESTAN Town. For this purpose, three Support Vector Machine (SVM) models namely SVM coupled with the discrete wavelet transform (SVM-Wavelet), the firefly algorithm (SVM-FFA) and using the radial basis function (SVM-RBF) were analyzed. The estimation and prediction results of these models were compared with two other soft computing methods (ANN (Artificial Neural Network) and GP (Genetic programming)) by using three statistical indicators i.e. RMSE (root means square error), coefficient of determination (R2) and Pearson coefficient (r). Based on the experimental outputs, the SVM-Wavelet method can lead to slightly accurate forecasting of the monthly overall natural gas demand." @default.
- W2175287745 created "2016-06-24" @default.
- W2175287745 creator A5069288907 @default.
- W2175287745 creator A5069294239 @default.
- W2175287745 creator A5072808274 @default.
- W2175287745 creator A5078376469 @default.
- W2175287745 creator A5085989233 @default.
- W2175287745 creator A5086550972 @default.
- W2175287745 date "2015-12-01" @default.
- W2175287745 modified "2023-10-03" @default.
- W2175287745 title "Appraisal of the support vector machine to forecast residential heating demand for the District Heating System based on the monthly overall natural gas consumption" @default.
- W2175287745 cites W133763731 @default.
- W2175287745 cites W1523741643 @default.
- W2175287745 cites W1748133846 @default.
- W2175287745 cites W1964791407 @default.
- W2175287745 cites W1966124853 @default.
- W2175287745 cites W1966796394 @default.
- W2175287745 cites W1969316479 @default.
- W2175287745 cites W1970204203 @default.
- W2175287745 cites W1973870112 @default.
- W2175287745 cites W1981822555 @default.
- W2175287745 cites W1989931667 @default.
- W2175287745 cites W1992530282 @default.
- W2175287745 cites W1997591124 @default.
- W2175287745 cites W2004041476 @default.
- W2175287745 cites W2017686746 @default.
- W2175287745 cites W2018192341 @default.
- W2175287745 cites W2020995787 @default.
- W2175287745 cites W2023272781 @default.
- W2175287745 cites W2028684662 @default.
- W2175287745 cites W2029888179 @default.
- W2175287745 cites W2035478691 @default.
- W2175287745 cites W2039556001 @default.
- W2175287745 cites W2039811647 @default.
- W2175287745 cites W2044587647 @default.
- W2175287745 cites W2046785557 @default.
- W2175287745 cites W2051568872 @default.
- W2175287745 cites W2056986886 @default.
- W2175287745 cites W2058326618 @default.
- W2175287745 cites W2074993972 @default.
- W2175287745 cites W2082776647 @default.
- W2175287745 cites W2086350890 @default.
- W2175287745 cites W2092514020 @default.
- W2175287745 cites W2104435712 @default.
- W2175287745 cites W2118051273 @default.
- W2175287745 cites W2127906599 @default.
- W2175287745 cites W2153272791 @default.
- W2175287745 cites W2156023754 @default.
- W2175287745 cites W2166922785 @default.
- W2175287745 cites W3122598275 @default.
- W2175287745 doi "https://doi.org/10.1016/j.energy.2015.10.015" @default.
- W2175287745 hasPublicationYear "2015" @default.
- W2175287745 type Work @default.
- W2175287745 sameAs 2175287745 @default.
- W2175287745 citedByCount "47" @default.
- W2175287745 countsByYear W21752877452016 @default.
- W2175287745 countsByYear W21752877452017 @default.
- W2175287745 countsByYear W21752877452018 @default.
- W2175287745 countsByYear W21752877452019 @default.
- W2175287745 countsByYear W21752877452020 @default.
- W2175287745 countsByYear W21752877452021 @default.
- W2175287745 countsByYear W21752877452022 @default.
- W2175287745 countsByYear W21752877452023 @default.
- W2175287745 crossrefType "journal-article" @default.
- W2175287745 hasAuthorship W2175287745A5069288907 @default.
- W2175287745 hasAuthorship W2175287745A5069294239 @default.
- W2175287745 hasAuthorship W2175287745A5072808274 @default.
- W2175287745 hasAuthorship W2175287745A5078376469 @default.
- W2175287745 hasAuthorship W2175287745A5085989233 @default.
- W2175287745 hasAuthorship W2175287745A5086550972 @default.
- W2175287745 hasConcept C105795698 @default.
- W2175287745 hasConcept C110332635 @default.
- W2175287745 hasConcept C119857082 @default.
- W2175287745 hasConcept C12267149 @default.
- W2175287745 hasConcept C124101348 @default.
- W2175287745 hasConcept C127413603 @default.
- W2175287745 hasConcept C139945424 @default.
- W2175287745 hasConcept C140073362 @default.
- W2175287745 hasConcept C154945302 @default.
- W2175287745 hasConcept C154982244 @default.
- W2175287745 hasConcept C199360897 @default.
- W2175287745 hasConcept C33923547 @default.
- W2175287745 hasConcept C41008148 @default.
- W2175287745 hasConcept C43521106 @default.
- W2175287745 hasConcept C47432892 @default.
- W2175287745 hasConcept C50644808 @default.
- W2175287745 hasConcept C548081761 @default.
- W2175287745 hasConcept C59427239 @default.
- W2175287745 hasConcept C85617194 @default.
- W2175287745 hasConcept C98856871 @default.
- W2175287745 hasConceptScore W2175287745C105795698 @default.
- W2175287745 hasConceptScore W2175287745C110332635 @default.
- W2175287745 hasConceptScore W2175287745C119857082 @default.
- W2175287745 hasConceptScore W2175287745C12267149 @default.
- W2175287745 hasConceptScore W2175287745C124101348 @default.
- W2175287745 hasConceptScore W2175287745C127413603 @default.
- W2175287745 hasConceptScore W2175287745C139945424 @default.
- W2175287745 hasConceptScore W2175287745C140073362 @default.