Matches in SemOpenAlex for { <https://semopenalex.org/work/W2175650622> ?p ?o ?g. }
- W2175650622 abstract "Pea is an important food and feed crop and a valuable component of low-input farming systems. Improving resistance to biotic and abiotic stresses is a major breeding target to enhance yield potential and regularity. Genomic selection (GS) has lately emerged as a promising technique to increase the accuracy and gain of marker-based selection. It uses genome-wide molecular marker data to predict the breeding values of candidate lines to selection. A collection of 339 genetic resource accessions (CRB339) was subjected to high-density genotyping using the GenoPea 13.2K SNP Array. Genomic prediction accuracy was evaluated for thousand seed weight (TSW), the number of seeds per plant (NSeed), and the date of flowering (BegFlo). Mean cross-environment prediction accuracies reached 0.83 for TSW, 0.68 for NSeed, and 0.65 for BegFlo. For each trait, the statistical method, the marker density, and/or the training population size and composition used for prediction were varied to investigate their effects on prediction accuracy: the effect was large for the size and composition of the training population but limited for the statistical method and marker density. Maximizing the relatedness between individuals in the training and test sets, through the CDmean-based method, significantly improved prediction accuracies. A cross-population cross-validation experiment was further conducted using the CRB339 collection as a training population set and nine recombinant inbred lines populations as test set. Prediction quality was high with mean Q (2) of 0.44 for TSW and 0.59 for BegFlo. Results are discussed in the light of current efforts to develop GS strategies in pea." @default.
- W2175650622 created "2016-06-24" @default.
- W2175650622 creator A5010994230 @default.
- W2175650622 creator A5019699600 @default.
- W2175650622 creator A5031527226 @default.
- W2175650622 creator A5034384215 @default.
- W2175650622 creator A5038285270 @default.
- W2175650622 creator A5040367410 @default.
- W2175650622 creator A5067449586 @default.
- W2175650622 creator A5077743122 @default.
- W2175650622 creator A5080387014 @default.
- W2175650622 creator A5086364359 @default.
- W2175650622 creator A5087348867 @default.
- W2175650622 date "2015-11-17" @default.
- W2175650622 modified "2023-10-09" @default.
- W2175650622 title "Genomic Prediction in Pea: Effect of Marker Density and Training Population Size and Composition on Prediction Accuracy" @default.
- W2175650622 cites W1587991422 @default.
- W2175650622 cites W1928998639 @default.
- W2175650622 cites W1972535009 @default.
- W2175650622 cites W1975513188 @default.
- W2175650622 cites W1975879827 @default.
- W2175650622 cites W1983160719 @default.
- W2175650622 cites W1984057217 @default.
- W2175650622 cites W1985609220 @default.
- W2175650622 cites W2024584136 @default.
- W2175650622 cites W2029384003 @default.
- W2175650622 cites W2032929024 @default.
- W2175650622 cites W2042991436 @default.
- W2175650622 cites W2044921269 @default.
- W2175650622 cites W2064013109 @default.
- W2175650622 cites W2064301248 @default.
- W2175650622 cites W2075417464 @default.
- W2175650622 cites W2075425860 @default.
- W2175650622 cites W2096832965 @default.
- W2175650622 cites W2096863518 @default.
- W2175650622 cites W2097360283 @default.
- W2175650622 cites W2110787179 @default.
- W2175650622 cites W2112484080 @default.
- W2175650622 cites W2117492258 @default.
- W2175650622 cites W2130244527 @default.
- W2175650622 cites W2145174267 @default.
- W2175650622 cites W2153707555 @default.
- W2175650622 cites W2166033750 @default.
- W2175650622 cites W2178862077 @default.
- W2175650622 cites W2194202312 @default.
- W2175650622 cites W4241223114 @default.
- W2175650622 cites W4294541781 @default.
- W2175650622 doi "https://doi.org/10.3389/fpls.2015.00941" @default.
- W2175650622 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4648083" @default.
- W2175650622 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26635819" @default.
- W2175650622 hasPublicationYear "2015" @default.
- W2175650622 type Work @default.
- W2175650622 sameAs 2175650622 @default.
- W2175650622 citedByCount "71" @default.
- W2175650622 countsByYear W21756506222015 @default.
- W2175650622 countsByYear W21756506222016 @default.
- W2175650622 countsByYear W21756506222017 @default.
- W2175650622 countsByYear W21756506222018 @default.
- W2175650622 countsByYear W21756506222019 @default.
- W2175650622 countsByYear W21756506222020 @default.
- W2175650622 countsByYear W21756506222021 @default.
- W2175650622 countsByYear W21756506222022 @default.
- W2175650622 countsByYear W21756506222023 @default.
- W2175650622 crossrefType "journal-article" @default.
- W2175650622 hasAuthorship W2175650622A5010994230 @default.
- W2175650622 hasAuthorship W2175650622A5019699600 @default.
- W2175650622 hasAuthorship W2175650622A5031527226 @default.
- W2175650622 hasAuthorship W2175650622A5034384215 @default.
- W2175650622 hasAuthorship W2175650622A5038285270 @default.
- W2175650622 hasAuthorship W2175650622A5040367410 @default.
- W2175650622 hasAuthorship W2175650622A5067449586 @default.
- W2175650622 hasAuthorship W2175650622A5077743122 @default.
- W2175650622 hasAuthorship W2175650622A5080387014 @default.
- W2175650622 hasAuthorship W2175650622A5086364359 @default.
- W2175650622 hasAuthorship W2175650622A5087348867 @default.
- W2175650622 hasBestOaLocation W21756506221 @default.
- W2175650622 hasConcept C104317684 @default.
- W2175650622 hasConcept C105795698 @default.
- W2175650622 hasConcept C106934330 @default.
- W2175650622 hasConcept C119857082 @default.
- W2175650622 hasConcept C135763542 @default.
- W2175650622 hasConcept C144024400 @default.
- W2175650622 hasConcept C149923435 @default.
- W2175650622 hasConcept C150903083 @default.
- W2175650622 hasConcept C153209595 @default.
- W2175650622 hasConcept C163691529 @default.
- W2175650622 hasConcept C199360897 @default.
- W2175650622 hasConcept C2779227213 @default.
- W2175650622 hasConcept C2908647359 @default.
- W2175650622 hasConcept C2992444039 @default.
- W2175650622 hasConcept C31467283 @default.
- W2175650622 hasConcept C33923547 @default.
- W2175650622 hasConcept C41008148 @default.
- W2175650622 hasConcept C54355233 @default.
- W2175650622 hasConcept C81917197 @default.
- W2175650622 hasConcept C81941488 @default.
- W2175650622 hasConcept C86803240 @default.
- W2175650622 hasConceptScore W2175650622C104317684 @default.
- W2175650622 hasConceptScore W2175650622C105795698 @default.
- W2175650622 hasConceptScore W2175650622C106934330 @default.