Matches in SemOpenAlex for { <https://semopenalex.org/work/W2175864900> ?p ?o ?g. }
- W2175864900 endingPage "2336" @default.
- W2175864900 startingPage "2322" @default.
- W2175864900 abstract "Shiga toxins (Stxs) are produced by enterohemorrhagic Escherichia coli (EHEC), which cause human infections with an often fatal outcome. Vero cell lines, derived from African green monkey kidney, represent the gold standard for determining the cytotoxic effects of Stxs. Despite their global use, knowledge about the exact structures of the Stx receptor glycosphingolipids (GSLs) and their assembly in lipid rafts is poor. Here we present a comprehensive structural analysis of Stx receptor GSLs and their distribution to detergent-resistant membranes (DRMs), which were prepared from Vero-B4 cells and used as lipid raft equivalents. We identified globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) as the GSL receptors for Stx1a, Stx2a, and Stx2e subtypes using TLC overlay detection combined with MS. The uncommon Stx receptor, globopentaosylceramide (Gb5Cer, Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer), which was specifically recognized (in addition to Gb3Cer and Gb4Cer) by Stx2e, was fully structurally characterized. Lipoforms of Stx receptor GSLs were found to mainly harbor ceramide moieties composed of sphingosine (d18:1) and C24:0/C24:1 or C16:0 fatty acid. Moreover, co-occurrence with lipid raft markers, SM and cholesterol, in DRMs suggested GSL association with membrane microdomains. This study provides the basis for further exploring the functional impact of lipid raft-associated Stx receptors for toxin-mediated injury of Vero-B4 cells. Shiga toxins (Stxs) are produced by enterohemorrhagic Escherichia coli (EHEC), which cause human infections with an often fatal outcome. Vero cell lines, derived from African green monkey kidney, represent the gold standard for determining the cytotoxic effects of Stxs. Despite their global use, knowledge about the exact structures of the Stx receptor glycosphingolipids (GSLs) and their assembly in lipid rafts is poor. Here we present a comprehensive structural analysis of Stx receptor GSLs and their distribution to detergent-resistant membranes (DRMs), which were prepared from Vero-B4 cells and used as lipid raft equivalents. We identified globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) as the GSL receptors for Stx1a, Stx2a, and Stx2e subtypes using TLC overlay detection combined with MS. The uncommon Stx receptor, globopentaosylceramide (Gb5Cer, Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer), which was specifically recognized (in addition to Gb3Cer and Gb4Cer) by Stx2e, was fully structurally characterized. Lipoforms of Stx receptor GSLs were found to mainly harbor ceramide moieties composed of sphingosine (d18:1) and C24:0/C24:1 or C16:0 fatty acid. Moreover, co-occurrence with lipid raft markers, SM and cholesterol, in DRMs suggested GSL association with membrane microdomains. This study provides the basis for further exploring the functional impact of lipid raft-associated Stx receptors for toxin-mediated injury of Vero-B4 cells. Derived from the kidney of an African green monkey (Cercopithecus aethiops) in the 1960s, Vero cells are one of the most common mammalian continuous cell lines used in research (1.Ammermann N.C. Beier-Sexton M. Azad A.F. Growth and maintenance of Vero cell lines.Curr. Protoc. Microbiol. 2008; Appendix 4 (Appendix 4E)Google Scholar). They are the most widely accepted cells for the production of cell culture-derived human influenza vaccines (2.Nicolson C. Major D. Wood J.M. Robertson J.S. Generation of influenza vaccine viruses on Vero cells by reverse genetics: an H5N1 candidate vaccine strain produced under a quality system.Vaccine. 2005; 23: 2943-2952Crossref PubMed Scopus (150) Google Scholar, 3.Barrett P.N. Portsmouth D. Ehrlich H.J. Developing cell culture-derived pandemic vaccines.Curr. Opin. Mol. Ther. 2010; 12: 21-30PubMed Google Scholar, 4.Feng S.Z. Jiao P.R. Qi W.B. Fan H.Y. Liao M. Development and strategies of cell-culture technology for influenza vaccine.Appl. Microbiol. Biotechnol. 2011; 89: 893-902Crossref PubMed Scopus (30) Google Scholar, 5.Montomoli E. Khadang B. Piccirella S. Trombetta C. Mennitto E. Manini I. Stanzani V. Lapini G. Cell culture-derived influenza vaccines from Vero cells: a new horizon for vaccine production.Expert Rev. Vaccines. 2012; 11: 587-594Crossref PubMed Scopus (49) Google Scholar) and are used in many other applications, including assessment of the effects of toxins and other substances on mammalian cells at the molecular level (6.Ohkusa T. Okayasu I. Ogihara T. Morita K. Ogawa M. Sato N. Induction of experimental ulcerative colitis by Fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis.Gut. 2003; 52: 79-83Crossref PubMed Scopus (196) Google Scholar, 7.Dingle T. Wee S. Mulvey G.L. Greco A. Kitova E.N. Sun J. Lin S. Klassen J.S. Palcic M.M. Ng K.K.S. et al.Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile..Glycobiology. 2008; 18: 698-706Crossref PubMed Scopus (55) Google Scholar, 8.Pellarín M.G. Albrecht C. Rojas M.J. Aguilar J.J. Konigheim B.S. Paraje M.G. Albesa I. Eraso A.J. Inhibition of cytotoxicity of Shiga toxin of Escherichia coli O157:H7 on Vero cells by Prosopis alba Griseb (Fabaceae) and Ziziphus mistol Griseb (Rhamnaceae) extracts.J. Food Prot. 2013; 76: 1733-1739Crossref PubMed Scopus (11) Google Scholar, 9.Kakisu E. Abraham A.G. Farinati C.T. Ibarra C. de Antonia G.L. Lactobacillus plantarum isolated fromk kefir protects Vero cells from cytotoxicity by type-II Shiga toxin from Escherichia coli O157:H7.J. Dairy Res. 2013; 80: 64-71Crossref PubMed Scopus (39) Google Scholar, 10.Funk J. Biber N. Schneider M. Hauser E. Enzenmüller S. Förtsch C. Barth H. Schmidt H. Cytotoxic and apoptotic effects of recombinant subtilase cytotoxin variants of Shiga toxin-producing Escherichia coli..Infect. Immun. 2015; 83: 2338-2349Crossref PubMed Scopus (17) Google Scholar). Specifically, Vero cells represent the gold standard for determining cytotoxic effects of bacterial exotoxins such as the Shiga toxins (Stxs) from Escherichia coli, starting from the very early investigations on Stx from Shigella dysenteriae type 1 and verotoxin (also referred to as Shiga-like toxin) from E. coli until recent studies on the E. coli O104:H4 outbreak strain isolated in 2011 in Germany employing verocytotoxicity assays (11.Konowalchuk J. Speirs J.I. Stavric S. Vero response to a cytotoxin of Escherichia coli..Infect. Immun. 1977; 18: 775-779Crossref PubMed Google Scholar, 12.Scotland S.M. Smith H.R. Rowe B. Two distinct toxins active on Vero cells from Escherichia coli O157.Lancet. 1985; 2: 885-886Abstract PubMed Scopus (153) Google Scholar, 13.Yutsudo T. Honda T. Miwatani T. Takeda Y. Characterization of purified Shiga toxin from Shigella dysenteriae 1.Microbiol. Immunol. 1986; 30: 1115-1127Crossref PubMed Scopus (27) Google Scholar, 14.Lingwood C.A. Law H. Richardson S. Petric M. Brunton J.L. de Grandis S. Karmali M. Glycolipid binding of purified and recombinant Escherichia coli produced verotoxin in vitro..J. Biol. Chem. 1987; 262: 8834-8839Abstract Full Text PDF PubMed Google Scholar, 15.Samuel J.E. Perera L.P. Ward S. O'Brien A.D. Ginsburg V. Krivan H.C. Comparison of the glycolipid receptor specificities of Shiga-like toxin type II and Shiga-like toxin type II variants.Infect. Immun. 1990; 58: 611-618Crossref PubMed Google Scholar, 16.Armstrong G.D. Fodor E. Vanmaele R. Investigation of Shiga-like toxin binding to chemically synthesized oligosaccharide sequences.J. Infect. Dis. 1991; 164: 1160-1167Crossref PubMed Scopus (108) Google Scholar, 17.Lindgren S.W. Samuel J.E. Schmitt C.K. O'Brien A.D. The specific activities of Shiga-like toxin type II (SLT-II) and SLT-II-related toxins of enterohemorrhagic Escherichia coli differ when measured by Vero cell cytotoxicity but not by mouse lethality.Infect. Immun. 1994; 62: 623-631Crossref PubMed Google Scholar, 18.Keusch G.T. Jacewicz M. Acheson D.W.K. Donohue-Rolfe A. Kane A.V. McCluer R.H. Globotriaosylceramide, Gb3, is an alternative functional receptor for Shiga-like toxin 2e.Infect. Immun. 1995; 63: 1138-1141Crossref PubMed Google Scholar, 19.Khine A.A. Tam P. Nutikka A. Lingwood C.A. Brefeldin A and filipin distinguish two globotriaosyl ceramide/verotoxin-1 intracellular trafficking pathways involved in Vero cell cytotoxicity.Glycobiology. 2004; 14: 701-712Crossref PubMed Scopus (29) Google Scholar, 20.Sekino T. Kiyokawa N. Taguchi T. Takenouchi H. Matsui J. Tang W-R. Suzuki T. Nakajima H. Saito M. Ohmi K. et al.Characterization of a Shiga-toxin 1-resistant stock of Vero cells.Microbiol. Immunol. 2004; 48: 377-387Crossref PubMed Scopus (16) Google Scholar, 21.Brigotti M. Caprioli A. Tozzi A.E. Tazzari P.L. Ricci F. Conte R. Carnicelli D. Procaccino M.A. Minelli F. Ferreti A.V. et al.Shiga toxins present in the gut and in the polymorphonuclear leukocytes circulating in the blood of children with hemolytic-uremic syndrome.J. Clin. Microbiol. 2006; 44: 313-317Crossref PubMed Scopus (47) Google Scholar, 22.Gallegos K.M. Conrady D.G. Karve S.S. Gunasekera T.S. Herr A.B. Weiss A.A. Shiga toxin binding to glycolipids and glycans.PLoS One. 2012; 7: e30368Crossref PubMed Scopus (69) Google Scholar, 23.Toval F. Schiller R. Meisen I. Putze J. Kouzel I.U. Zhang W. Karch H. Bielaszewska M. Mormann M. Müthing J. et al.Characterization of urinary tract infection-associated Shiga toxin-producing Escherichia coli..Infect. Immun. 2014; 82: 4631-4642Crossref PubMed Scopus (22) Google Scholar, 24.Tietze E. Dabrowski P.W. Prager R. Radonic A. Fruth A. Auraß P. Nitsche A. Mielke M. Flieger A. Comparative genomic analysis of two novel sporadic Shiga toxin-producing Escherichia coli O104:H4 strains isolated 2011 in Germany.PLoS One. 2015; 10: e0122074Crossref PubMed Scopus (14) Google Scholar). Stxs are produced by enterohemorrhagic E. coli (EHEC), which represent a certain subgroup of Stx-producing E. coli being responsible for global causes of diarrhea. The significant risk of developing two potentially life-threatening extraintestinal complications, hemorrhagic colitis and the hemolytic uremic syndrome, makes EHEC infections a public health problem of serious concern (25.Karmali M.A. Infection by verocytotoxin-producing Escherichia coli..Clin. Microbiol. Rev. 1989; 2: 15-38Crossref PubMed Scopus (1115) Google Scholar, 26.Bielaszewska M. Mellmann A. Zhang W. Köck R. Fruth A. Bauwens A. Peters G. Karch H. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study.Lancet Infect. Dis. 2011; 11: 671-676Abstract Full Text Full Text PDF PubMed Scopus (600) Google Scholar, 27.Karch H. Denamur E. Dobrindt U. Finlay B.B. Hengge R. Johannes L. Ron E.Z. Tønjum T. Sansonetti P.J. Vicente M. The enemy within us: lessons from the 2011 European Escherichia coli O104:H4 outbreak.EMBO Mol. Med. 2012; 4: 841-848Crossref PubMed Scopus (187) Google Scholar, 28.Davis T.K. van de Kar N.C. Tarr P.I. Shiga toxin/verocytotoxin-producing Escherichia coli infections: practical clinical perspectives.Microbiol. Spectr. 2014; 2doi:10.1128/microbiolspec.EHEC-0025-2014Crossref PubMed Scopus (43) Google Scholar, 29.Terajima J. Iyoda S. Ohnishi M. Watanabe H. Shiga toxin (verotoxin)-producing Escherichia coli in Japan.Microbiol. Spectr. 2014; 2Crossref PubMed Scopus (33) Google Scholar). Stxs, synonymously named as “verotoxins” or “verocytotoxins” 28.Davis T.K. van de Kar N.C. Tarr P.I. Shiga toxin/verocytotoxin-producing Escherichia coli infections: practical clinical perspectives.Microbiol. Spectr. 2014; 2doi:10.1128/microbiolspec.EHEC-0025-2014Crossref PubMed Scopus (43) Google Scholar, 29.Terajima J. Iyoda S. Ohnishi M. Watanabe H. Shiga toxin (verotoxin)-producing Escherichia coli in Japan.Microbiol. Spectr. 2014; 2Crossref PubMed Scopus (33) Google Scholar) owing to their cytotoxic capacity toward Vero cells, preferentially target microvascular endothelial cells of the human kidneys and the brain (30.Motto D. Endothelial cells and thrombotic microangiopathy.Semin. Nephrol. 2012; 32: 208-214Abstract Full Text Full Text PDF PubMed Scopus (17) Google Scholar, 31.Trachtman H. Austin C. Lewinski M. Stahl R.A. Renal and neurological involvement in typical Shiga toxin-associated HUS.Nat. Rev. Nephrol. 2012; 8: 658-669Crossref PubMed Scopus (155) Google Scholar, 32.Bauwens A. Betz J. Meisen I. Kemper B. Karch H. Müthing J. Facing glycosphingolipid-Shiga toxin interaction: dire straits for endothelial cells of the human vasculature.Cell. Mol. Life Sci. 2013; 70: 425-457Crossref PubMed Scopus (63) Google Scholar) that follow gastrointestinal infection and culminate as renal insufficiency and an often fatal outcome (26.Bielaszewska M. Mellmann A. Zhang W. Köck R. Fruth A. Bauwens A. Peters G. Karch H. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study.Lancet Infect. Dis. 2011; 11: 671-676Abstract Full Text Full Text PDF PubMed Scopus (600) Google Scholar, 31.Trachtman H. Austin C. Lewinski M. Stahl R.A. Renal and neurological involvement in typical Shiga toxin-associated HUS.Nat. Rev. Nephrol. 2012; 8: 658-669Crossref PubMed Scopus (155) Google Scholar, 33.Zoja C. Buelli S. Morigi M. Shiga toxin-associated hemolytic uremic syndrome: pathophsyiology of endothelial dysfunction.Pediatr. Nephrol. 2010; 25: 2231-2240Crossref PubMed Scopus (149) Google Scholar). Stxs are composed of a single 30 kDa A subunit and a pentamer of noncovalently attached identical 7 kDa B subunits (34.Bergan J. Dyve Lingelem A.B. Simm R. Skotland T. Sandvig K. Shiga toxins.Toxicon. 2012; 60: 1085-1107Crossref PubMed Scopus (150) Google Scholar). The B pentamer binds to cell surface-exposed glycosphingolipids (GSLs) of the globo-series and is therefore dependent on these lipids for transport into the cells (35.Sandvig K. Bergan J. Kavaliauskiene S. Skotland T. Lipid requirements for entry of protein toxins into cells.Prog. Lipid Res. 2014; 54: 1-13Crossref PubMed Scopus (64) Google Scholar). After retrograde routing of the holotoxin to the endoplasmic reticulum and cleavage of the A subunit, the A1 fragment halts eukaryotic protein biosynthesis by inactivating ribosomes leading to cell death (36.Johannes L. Römer W. Shiga toxins–from cell biology to biomedical applications.Nat. Rev. Microbiol. 2010; 8: 105-116Crossref PubMed Scopus (373) Google Scholar, 37.Sandvig K. Bergan J. Dyve A.B. Skotland T. Torgersen M.L. Endocytosis and retrograde transport of Shiga toxin.Toxicon. 2010; 56: 1181-1185Crossref PubMed Scopus (102) Google Scholar). The Stx subtypes, Stx1a, Stx2a, and Stx2e [for nomenclature of Stx subtypes refer to Scheutz et al. (38.Scheutz F. Teel L.D. Beutin L. Piérard D. Buvens G. Karch H. Mellmann A. Caprioli A. Tozzoli R. Morabito S. et al.Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature.J. Clin. Microbiol. 2012; 50: 2951-2963Crossref PubMed Scopus (556) Google Scholar)], which have so far been investigated in more detail, can be distinguished with regard to their exact binding specificity (39.Müthing J. Meisen I. Zhang W. Bielaszewska M. Mormann M. Bauerfeind R. Schmidt M.A. Friedrich A.W. Karch H. Promiscuous Shiga toxin 2e and its intimate relationship to Forssman.Glycobiology. 2012; 22: 849-862Crossref PubMed Scopus (50) Google Scholar). Variants of the Stx1a subtype have been shown to exhibit preferential and moderate binding toward globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1Cer), respectively. Stx2a variants prefer Gb3Cer and exhibit only marginal binding toward Gb4Cer, while Stx2e binds, in addition to Gb3Cer and a preference for Gb4Cer, also to the Forssman GSL, which represents a pentahexosylceramide with GalNAcα3GalNAcβ3Galα4Galβ4Glcβ1Cer structure (39.Müthing J. Meisen I. Zhang W. Bielaszewska M. Mormann M. Bauerfeind R. Schmidt M.A. Friedrich A.W. Karch H. Promiscuous Shiga toxin 2e and its intimate relationship to Forssman.Glycobiology. 2012; 22: 849-862Crossref PubMed Scopus (50) Google Scholar), indicating promiscuous binding of Stx2e to globo-series-related GSLs with elongated Gb3Cer/Gb4Cer core structures. GSLs belong to the structurally very diverse group of sphingolipids (40.Levery S.B. Glycosphingolipid structural analysis and glycosphingolipidomics.Methods Enzymol. 2005; 405: 300-369Crossref PubMed Scopus (129) Google Scholar, 41.Müthing J. Distler U. Advances on the compositional analysis of glycosphingolipids combining thin-layer chromatography with mass spectrometry.Mass Spectrom. Rev. 2010; 29: 425-479Crossref PubMed Scopus (67) Google Scholar, 42.Merrill Jr, A.H. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics.Chem. Rev. 2011; 111: 6387-6422Crossref PubMed Scopus (505) Google Scholar) and have long been considered mysterious and puzzling riddles, beginning with the initial naming of “sphingosin” in the 1880s by the German physician and biochemist J. L. W. Thudichum due to their enigmatic (“Sphinx-like”) properties (43.Merrill Jr., A.H. Schmelz E.M. Dillehay D.L. Spiegel S. Shayman J.A. Schroeder J.J. Riley R.T. Voss K.A. Wang E. Sphingolipids–the enigmatic lipid class: biochemistry, physiology, and pathophysiology.Toxicol. Appl. Pharmacol. 1997; 142: 208-225Crossref PubMed Scopus (564) Google Scholar, 44.Merrill Jr., A.H. Carman G.M. Introduction to thematic minireview series: novel bioactive sphingolipids.J. Biol. Chem. 2015; 290: 15362-15364Abstract Full Text Full Text PDF PubMed Scopus (6) Google Scholar). Their biosynthesis is rather complex (42.Merrill Jr, A.H. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics.Chem. Rev. 2011; 111: 6387-6422Crossref PubMed Scopus (505) Google Scholar) and they play important roles in the formation of the nervous system, where they are especially abundant (45.Yu R.K. Nakatani Y. Yanagisawa M. The role of glycosphingolipid metabolism in the developing brain.J. Lipid Res. 2009; 50: S440-S445Abstract Full Text Full Text PDF PubMed Scopus (207) Google Scholar, 46.Yu R.K. Tsai Y.T. Ariga T. Functional roles of gangliosides in neurodevelopment: an overview of recent advances.Neurochem. Res. 2012; 37: 1230-1244Crossref PubMed Scopus (140) Google Scholar, 47.Schengrund C.L. Gangliosides: glycosphingolipids essential for normal neural development and function.Trends Biochem. Sci. 2015; 40: 397-406Abstract Full Text Full Text PDF PubMed Scopus (157) Google Scholar). “Sphingolipidomic” analysis is now becoming feasible, at least for ceramides and other bioactive sphingolipid backbones, using MS (48.Zheng W. Kollmeyer J. Symolon H. Momin A. Munter E. Wang E. Kelly S. Allegood J.C. Liu Y. Peng Q. et al.Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy.Biochim. Biophys. Acta. 2006; 1758: 1864-1884Crossref PubMed Scopus (443) Google Scholar), including novel MALDI MS imaging techniques (49.Soltwisch J. Kettling H. Vens-Cappell S. Wiegelmann M. Müthing J. Dreisewerd K. Mass spectrometry imaging with laser-induced postionization.Science. 2015; 348: 211-215Crossref PubMed Scopus (199) Google Scholar). GSLs are believed to be involved in many cellular events such as trafficking, signaling, and cellular interaction (50.Jennemann R. Gröne H.J. Cell-specific in vivo functions of glycosphingolipids: lessons from genetic deletions of enzymes involved in glycosphingolipid synthesis.Prog. Lipid Res. 2013; 52: 231-248Crossref PubMed Scopus (52) Google Scholar), as well as inflammation (51.Furukawa K. Ohmi Y. Kondo Y. Ohkawa Y. Tajima O. Furukawa K. Regulatory function of glycosphingolipids in the inflammation and degeneration.Arch. Biochem. Biophys. 2015; 571: 58-65Crossref PubMed Scopus (18) Google Scholar). They function as important components in keratinocytes, for instance, where preservation of the skin barrier depends on GSL biosynthesis, and in enterocytes of the small intestine, where GSLs are involved in endocytosis and vesicular transport (50.Jennemann R. Gröne H.J. Cell-specific in vivo functions of glycosphingolipids: lessons from genetic deletions of enzymes involved in glycosphingolipid synthesis.Prog. Lipid Res. 2013; 52: 231-248Crossref PubMed Scopus (52) Google Scholar). In particular, they participate in the formation of lipid rafts, which are considered to be functional nanoscale membrane domains enriched in cholesterol and sphingolipids, characteristic of the external leaflet of cell membranes in particular (52.Róg T. Vattulainen I. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes.Chem. Phys. Lipids. 2014; 184: 82-104Crossref PubMed Scopus (138) Google Scholar). Although the understanding of the structure of lipid rafts in living cells is quite limited, they are suggested to be involved in a great variety of cellular functions and biological events (53.Lingwood D. Simons K. Lipid rafts as a membrane-organizing principle.Science. 2010; 327: 46-50Crossref PubMed Scopus (3202) Google Scholar, 54.Simons K. Gerl M.J. Revitalizing membrane rafts: new tools and insights.Nat. Rev. Mol. Cell Biol. 2010; 11: 688-699Crossref PubMed Scopus (988) Google Scholar, 55.Sonnino S. Prinetti A. Membrane domains and the “lipid raft” concept.Curr. Med. Chem. 2013; 20: 4-21PubMed Google Scholar). Plasma membrane organization in microdomains seems to be a functional requirement for binding and efficient internalization of pathogens and toxins, such as Vibrio cholerae toxin or Stxs from pathogenic E. coli (35.Sandvig K. Bergan J. Kavaliauskiene S. Skotland T. Lipid requirements for entry of protein toxins into cells.Prog. Lipid Res. 2014; 54: 1-13Crossref PubMed Scopus (64) Google Scholar, 56.Lencer W.I. Saslowsky D. Raft trafficking of AB5 subunit bacterial toxins.Biochim. Biophys. Acta. 2005; 1746: 314-321Crossref PubMed Scopus (91) Google Scholar, 57.Aigal S. Claudinon J. Römer W. Plasma membrane reorganization: a glycolipid gateway for microbes.Biochim. Biophys. Acta. 2015; 1853: 858-871Crossref PubMed Scopus (49) Google Scholar). Cholesterol-rich lipid rafts make them relatively resistant to solubilization by nonionic detergents, allowing for the isolation of detergent-resistant membranes (DRMs) from low buoyant density fractions after sucrose density ultracentrifugation (58.London E. Brown D.A. Insolubility of lipids in Triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts).Biochim. Biophys. Acta. 2000; 1508: 182-195Crossref PubMed Scopus (577) Google Scholar). Although a matter of debate (59.Klotzsch E. Schütz G.J. A critical survey of methods to detect plasma membrane rafts.Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013; 368: 20120033Crossref PubMed Scopus (69) Google Scholar), compositional analysis of lipid rafts is largely obtained from DRMs as the ruling method to assigning lipid raft-association (60.Lingwood D. Simons K. Detergent resistance as a tool in membrane research.Nat. Protoc. 2007; 2: 2159-2165Crossref PubMed Scopus (223) Google Scholar). Here we present the first comprehensive investigation of Vero cells regarding identification and structural characterization of globo-series Stx receptor GSLs for various Stx subtypes, their molecular assembly with phospholipids, and cholesterol in membrane microdomains using DRMs and Stx-mediated cytotoxicity. This study might be helpful to further our understanding of Vero cell sensitivity to various Stx subtypes and the functional role of lipid rafts in kidney epithelial cells. Vero-B4 cells were obtained from the Leibniz Institute Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; DSMZ number ACC 33). The cell line, which was established from the kidney of a normal adult African green monkey (Cercopithecus aethiops) in Japan (1.Ammermann N.C. Beier-Sexton M. Azad A.F. Growth and maintenance of Vero cell lines.Curr. Protoc. Microbiol. 2008; Appendix 4 (Appendix 4E)Google Scholar), was grown in MEM culture medium with nonessential amino acids and 1 mM sodium pyruvate (Lonza, Verviers, Belgium), MEM vitamin mix (Lonza, Wakersville, MD) plus 5% FCS (PAA, Pasching, Austria) in a humidified atmosphere at 37°C with 5% CO2. The cells grow as adherent-elongated fibroblast-like cells in monolayers. Cultures were routinely passaged every 2 to 3 days using 0.25% trypsin-EDTA (Invitrogen, Karlsruhe, Germany; catalog number 25200) before cells became confluent. Appropriate cell production for the isolation of preparative amounts of GSLs from total cells (see Purification of neutral GSLs from Vero-B4 cells below) and for the preparation of sucrose density gradient fractions (see Preparation of sucrose density gradient fractions: DRMs and nonDRM fractions below) was performed in 175 cm2 tissue culture flasks (Greiner Bio-One, Frickenhausen, Germany), as previously described for endothelial cells (61.Bauwens A. Bielaszewska M. Kemper B. Langehanenberg P. von Bally G. Reichelt R. Mulac D. Humpf H-U. Friedrich A.W. Kim K.S. et al.Differential cytotoxic actions of Shiga toxin 1 and Shiga toxin 2 on microvascular and macrovascular endothelial cells.Thromb. Haemost. 2011; 105: 515-528Crossref PubMed Scopus (81) Google Scholar, 62.Betz J. Bielaszewska M. Thies A. Humpf H.U. Dreisewerd K. Karch H. Kim K.S. Friedrich A.W. Müthing J. Shiga toxin glycosphingolipid receptors in microvascular and macrovascular endothelial cells: differential association with membrane lipid raft microdomains.J. Lipid Res. 2011; 52: 618-634Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar, 63.Storck W. Meisen I. Gianmoena K. Pläger I. Kouzel I.U. Bielaszewska M. Haier J. Mormann M. Humpf H.U. Karch H. et al.Shiga toxin glycosphingolipid receptor expression and toxin susceptibility of human pancreatic ductal adenocarcinomas of differing origin and differentiation.Biol. Chem. 2012; 393: 785-799Crossref PubMed Scopus (18) Google Scholar). Indirect determination of cell viability was performed using the crystal violet assay, as previously described (61.Bauwens A. Bielaszewska M. Kemper B. Langehanenberg P. von Bally G. Reichelt R. Mulac D. Humpf H-U. Friedrich A.W. Kim K.S. et al.Differential cytotoxic actions of Shiga toxin 1 and Shiga toxin 2 on microvascular and macrovascular endothelial cells.Thromb. Haemost. 2011; 105: 515-528Crossref PubMed Scopus (81) Google Scholar, 62.Betz J. Bielaszewska M. Thies A. Humpf H.U. Dreisewerd K. Karch H. Kim K.S. Friedrich A.W. Müthing J. Shiga toxin glycosphingolipid receptors in microvascular and macrovascular endothelial cells: differential association with membrane lipid raft microdomains.J. Lipid Res. 2011; 52: 618-634Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar, 63.Storck W. Meisen I. Gianmoena K. Pläger I. Kouzel I.U. Bielaszewska M. Haier J. Mormann M. Humpf H.U. Karch H. et al.Shiga toxin glycosphingolipid receptor expression and toxin susceptibility of human pancreatic ductal adenocarcinomas of differing origin and differentiation.Biol. Chem. 2012; 393: 785-799Crossref PubMed Scopus (18) Google Scholar). Briefly, Vero-B4 cells were grown until subconfluence in tissue culture flasks (Greiner Bio-One), trypsinized and seeded in 100 μl volumes in 96-well tissue culture plates (Corning Inc., Corning, NY) (initial cell seeding density of 4 × 103 cells/well). One hundred microliters of Stx-containing supernatants from E. coli cultures (see Stx1a, Stx2a, Stx2e, anti-Stx, anti-GSL, and secondary antibodies below) were added in various dilutions in cell culture medium to cell culture plate wells (final volume of 200 μl) and incubated for 48 h (37°C, 5% CO2). Stx-free cell culture medium served as a control. Incubation was stopped by removal of the diluted supernatants. Remaining adherent cells were fixed with formalin, stained with crystal violet, and densitometrically quantified (61.Bauwens A. Bielaszewska M. Kemper B. Langehanenberg P. von Bally G. Reichelt R. Mulac D. Humpf H-U. Friedrich A.W. Kim K.S. et al.Differential cytotoxic actions of Shiga toxin 1 and Shiga toxin 2 on microvascular and macrovascular endothelial cells.Thromb. Haemost. 2011; 105: 515-528Crossref PubMed Scopus (81) Google Scholar, 62.Betz J. Bielaszewska M. Thies A. Humpf H.U. Dreisewerd K. Karch H. Kim K.S. Friedrich A.W. Müthing J. Shiga toxin glycosphingolipid receptors in microvascular and macrovascular endothelial cells: differential association with membrane lipid raft microdomains.J. Lipid Res. 2011; 52: 618-634Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar, 63.Storck W. Meisen I. Gianmoena K. Pläger I. Kouzel I.U. Bielaszewska M. Haier J. Mormann M. Humpf H.U. Karch H. et al.Shiga toxin glycosphingolipid receptor expression and toxin susceptibility of human pancreatic ductal adenocarcinomas of differing origin and differentiation.Biol. Chem. 2012; 393: 785-799Crossref PubMed Scopus (18) Google Scholar). Results represent the mean ± SD of quadruplicate determinations and are portrayed as percentage values of untreated control cells. Neutral GSLs were isolated from total cells and purified, as previously described (62.Betz J. Bielaszewska M. Thies A. Humpf H.U. Dreisewerd K. Karch H. Kim K.S. Friedrich A.W. Müthing J. Shiga toxin glycosphingolipid receptors in microvascular and macrovascular endothelial cells: differential association with membrane lipid raft microdomains.J. Lipid Res. 2011; 52: 618-634Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar, 63.Storck W. Meisen I. Gianmoena K. Pläger I. Kouzel I.U. Bielaszewska M. Haier J. Mormann M. Humpf H.U. Karch H. et al.Shiga toxin glycosphingolipid" @default.
- W2175864900 created "2016-06-24" @default.
- W2175864900 creator A5002829596 @default.
- W2175864900 creator A5004842909 @default.
- W2175864900 creator A5014265498 @default.
- W2175864900 creator A5021624903 @default.
- W2175864900 creator A5021981765 @default.
- W2175864900 creator A5037678266 @default.
- W2175864900 creator A5055260011 @default.
- W2175864900 creator A5083127180 @default.
- W2175864900 date "2015-12-01" @default.
- W2175864900 modified "2023-09-26" @default.
- W2175864900 title "Shiga toxin glycosphingolipid receptors of Vero-B4 kidney epithelial cells and their membrane microdomain lipid environment" @default.
- W2175864900 cites W1482533589 @default.
- W2175864900 cites W1511540332 @default.
- W2175864900 cites W1522819451 @default.
- W2175864900 cites W1574551367 @default.
- W2175864900 cites W1601227390 @default.
- W2175864900 cites W17199539 @default.
- W2175864900 cites W1819962733 @default.
- W2175864900 cites W1859309117 @default.
- W2175864900 cites W1917944207 @default.
- W2175864900 cites W1935475364 @default.
- W2175864900 cites W1942715185 @default.
- W2175864900 cites W1964101603 @default.
- W2175864900 cites W1969461041 @default.
- W2175864900 cites W1971557848 @default.
- W2175864900 cites W1974282614 @default.
- W2175864900 cites W1981299981 @default.
- W2175864900 cites W1985105283 @default.
- W2175864900 cites W1997739354 @default.
- W2175864900 cites W1999160838 @default.
- W2175864900 cites W2000287523 @default.
- W2175864900 cites W2000589404 @default.
- W2175864900 cites W2004468763 @default.
- W2175864900 cites W2007063903 @default.
- W2175864900 cites W2009259680 @default.
- W2175864900 cites W2010866755 @default.
- W2175864900 cites W2010915913 @default.
- W2175864900 cites W2016793136 @default.
- W2175864900 cites W2019502270 @default.
- W2175864900 cites W2021398192 @default.
- W2175864900 cites W2021423975 @default.
- W2175864900 cites W2022679517 @default.
- W2175864900 cites W2022758871 @default.
- W2175864900 cites W2023904788 @default.
- W2175864900 cites W2026930178 @default.
- W2175864900 cites W2032072281 @default.
- W2175864900 cites W2032923271 @default.
- W2175864900 cites W2033118339 @default.
- W2175864900 cites W2036847748 @default.
- W2175864900 cites W2037049457 @default.
- W2175864900 cites W2038533631 @default.
- W2175864900 cites W2039298162 @default.
- W2175864900 cites W2045009404 @default.
- W2175864900 cites W2048055598 @default.
- W2175864900 cites W2051038445 @default.
- W2175864900 cites W2051256643 @default.
- W2175864900 cites W2051567318 @default.
- W2175864900 cites W2052602536 @default.
- W2175864900 cites W2058006650 @default.
- W2175864900 cites W2064383792 @default.
- W2175864900 cites W2066053009 @default.
- W2175864900 cites W2067323056 @default.
- W2175864900 cites W2069894761 @default.
- W2175864900 cites W2075692490 @default.
- W2175864900 cites W2079524849 @default.
- W2175864900 cites W2079711514 @default.
- W2175864900 cites W2082661031 @default.
- W2175864900 cites W2084119956 @default.
- W2175864900 cites W2084418891 @default.
- W2175864900 cites W2084676072 @default.
- W2175864900 cites W2087851481 @default.
- W2175864900 cites W2088250504 @default.
- W2175864900 cites W2092782104 @default.
- W2175864900 cites W2093083597 @default.
- W2175864900 cites W2094358598 @default.
- W2175864900 cites W2096038670 @default.
- W2175864900 cites W2096061034 @default.
- W2175864900 cites W2102550868 @default.
- W2175864900 cites W2102685106 @default.
- W2175864900 cites W2104125356 @default.
- W2175864900 cites W2106657658 @default.
- W2175864900 cites W2107057345 @default.
- W2175864900 cites W2107274530 @default.
- W2175864900 cites W2109554857 @default.
- W2175864900 cites W2111056523 @default.
- W2175864900 cites W2116137214 @default.
- W2175864900 cites W2125457697 @default.
- W2175864900 cites W2125774503 @default.
- W2175864900 cites W2128343971 @default.
- W2175864900 cites W2133388060 @default.
- W2175864900 cites W2136558879 @default.
- W2175864900 cites W2140167904 @default.
- W2175864900 cites W2141071177 @default.
- W2175864900 cites W2144008467 @default.
- W2175864900 cites W2144256020 @default.
- W2175864900 cites W2156080241 @default.