Matches in SemOpenAlex for { <https://semopenalex.org/work/W2176533062> ?p ?o ?g. }
- W2176533062 abstract "This thesis deals with Harish-Chandra bimodules of rational Cherednik algebras Hk at regular parameter values k, that is those k for which Hk is a simple algebra. Rational Cherednik algebras can be associated to any reflection representation of a complex reflection group Γ. The second chapter presents a review of some important results regarding rational Cherednik algebras and their category Ok, which will be frequently used throughout. The third chapter contains basic results about Harish-Chandra bimodules and the structure of the category HCk of Harish-Chandra bimodules, many of which are new in the context of complex reflection groups but have known analogues for real reflection groups at integral parameter values by work of Berest-Etingof-Ginzburg in [BEG03b]. In particular we show that if k is regular, then HCk is a semisimple tensor category and is equivalent to a tensor-closed subcategory of modules of the associated Hecke algebra. Using work of I. Losev in [Los11a], we also deduce that HCk is equivalent as a tensor category to repC (Γ/Nk), the representation category of a quotient of the complex reflection group Γ. This extends previous results for the case of integral k. We manage to obtain some numerical consequences for the presentation of the Hecke algebra of Γ, which is linked to Hk and Ok via the KZk-functor. The fourth chapter again is a review of standard results on Morita equivalences between rings and integral shift functors giving Morita equivalences between rational Cherednik algebras and their tensor categories of Harish-Chandra bimodules at different regular parameter values. The case of integral parameter values k is discussed briefly, going back to Berest-Etingof-Ginzburg in [BEG03b] and Berest-Chalykh in [BC09]. The fifth chapter gives a complete description of Nk and its dependence on k (still for k regular) for the case that Γ is cyclic. In chapter 6 we deal with finite-dimensional Harish-Chandra bimodules of rational Cherednik algebras associated to cyclic groups, compute the quiver of that category and derive a criterion for wildness of HCk in the cyclic case. Chapter 7 finally extends a classification of the structure of HCk as a tensor category for regular k to finite irreducible Coxeter groups." @default.
- W2176533062 created "2016-06-24" @default.
- W2176533062 creator A5011898753 @default.
- W2176533062 date "2012-09-01" @default.
- W2176533062 modified "2023-10-17" @default.
- W2176533062 title "On Harish-Chandra bimodules of rational Cherednik algebras at regular parameter values" @default.
- W2176533062 cites W1506499604 @default.
- W2176533062 cites W1530431073 @default.
- W2176533062 cites W1542689491 @default.
- W2176533062 cites W1579739595 @default.
- W2176533062 cites W1590090921 @default.
- W2176533062 cites W1596655614 @default.
- W2176533062 cites W169573128 @default.
- W2176533062 cites W1849976071 @default.
- W2176533062 cites W1982565394 @default.
- W2176533062 cites W1983716911 @default.
- W2176533062 cites W1987475519 @default.
- W2176533062 cites W2001613603 @default.
- W2176533062 cites W2009190506 @default.
- W2176533062 cites W2018021371 @default.
- W2176533062 cites W2031066950 @default.
- W2176533062 cites W2042220510 @default.
- W2176533062 cites W2049707341 @default.
- W2176533062 cites W2056482764 @default.
- W2176533062 cites W2063326628 @default.
- W2176533062 cites W2072016444 @default.
- W2176533062 cites W2074192141 @default.
- W2176533062 cites W2078936908 @default.
- W2176533062 cites W2080785559 @default.
- W2176533062 cites W2081257302 @default.
- W2176533062 cites W2081323252 @default.
- W2176533062 cites W2093890854 @default.
- W2176533062 cites W2114486296 @default.
- W2176533062 cites W2130315518 @default.
- W2176533062 cites W2151682424 @default.
- W2176533062 cites W2214822119 @default.
- W2176533062 cites W2314507527 @default.
- W2176533062 cites W2334744294 @default.
- W2176533062 cites W2495663863 @default.
- W2176533062 cites W2503589681 @default.
- W2176533062 cites W2575722356 @default.
- W2176533062 cites W2949177708 @default.
- W2176533062 cites W2962851768 @default.
- W2176533062 cites W2963564816 @default.
- W2176533062 cites W2963829412 @default.
- W2176533062 cites W3040586665 @default.
- W2176533062 cites W3093281440 @default.
- W2176533062 cites W55417409 @default.
- W2176533062 cites W582494080 @default.
- W2176533062 cites W592499083 @default.
- W2176533062 cites W85353504 @default.
- W2176533062 cites W977166286 @default.
- W2176533062 hasPublicationYear "2012" @default.
- W2176533062 type Work @default.
- W2176533062 sameAs 2176533062 @default.
- W2176533062 citedByCount "2" @default.
- W2176533062 countsByYear W21765330622014 @default.
- W2176533062 countsByYear W21765330622017 @default.
- W2176533062 crossrefType "dissertation" @default.
- W2176533062 hasAuthorship W2176533062A5011898753 @default.
- W2176533062 hasConcept C136119220 @default.
- W2176533062 hasConcept C143669375 @default.
- W2176533062 hasConcept C155281189 @default.
- W2176533062 hasConcept C156772000 @default.
- W2176533062 hasConcept C168310172 @default.
- W2176533062 hasConcept C197273675 @default.
- W2176533062 hasConcept C199360897 @default.
- W2176533062 hasConcept C199422724 @default.
- W2176533062 hasConcept C202444582 @default.
- W2176533062 hasConcept C33923547 @default.
- W2176533062 hasConcept C41008148 @default.
- W2176533062 hasConcept C51255310 @default.
- W2176533062 hasConcept C65682993 @default.
- W2176533062 hasConceptScore W2176533062C136119220 @default.
- W2176533062 hasConceptScore W2176533062C143669375 @default.
- W2176533062 hasConceptScore W2176533062C155281189 @default.
- W2176533062 hasConceptScore W2176533062C156772000 @default.
- W2176533062 hasConceptScore W2176533062C168310172 @default.
- W2176533062 hasConceptScore W2176533062C197273675 @default.
- W2176533062 hasConceptScore W2176533062C199360897 @default.
- W2176533062 hasConceptScore W2176533062C199422724 @default.
- W2176533062 hasConceptScore W2176533062C202444582 @default.
- W2176533062 hasConceptScore W2176533062C33923547 @default.
- W2176533062 hasConceptScore W2176533062C41008148 @default.
- W2176533062 hasConceptScore W2176533062C51255310 @default.
- W2176533062 hasConceptScore W2176533062C65682993 @default.
- W2176533062 hasLocation W21765330621 @default.
- W2176533062 hasOpenAccess W2176533062 @default.
- W2176533062 hasPrimaryLocation W21765330621 @default.
- W2176533062 hasRelatedWork W152299797 @default.
- W2176533062 hasRelatedWork W1563266592 @default.
- W2176533062 hasRelatedWork W1599092619 @default.
- W2176533062 hasRelatedWork W1977307314 @default.
- W2176533062 hasRelatedWork W1983430270 @default.
- W2176533062 hasRelatedWork W2094557570 @default.
- W2176533062 hasRelatedWork W2118409500 @default.
- W2176533062 hasRelatedWork W2173346573 @default.
- W2176533062 hasRelatedWork W2345903831 @default.
- W2176533062 hasRelatedWork W2509668472 @default.
- W2176533062 hasRelatedWork W2522615296 @default.