Matches in SemOpenAlex for { <https://semopenalex.org/work/W2176738702> ?p ?o ?g. }
- W2176738702 abstract "Novelty detection is a method which highlights unusual data gathered from an environment. The use of novelty detection on a mobile system is an attractive idea. An important aspect of an intelligent robot is the ability to monitor changes as this is one of the important capabilities that are possessed by all biological systems. There are many applications that could benefit from this such as surveillance and inspection applications. However, there are also challenges that arise from implementing novelty detection on a mobile platform. One of them is the problem of mapping sensor measurements that are normally perceived (normal data) from the environment. Most conventional maps require some prior information about the environment to construct their structure, thus they are not readily adaptable to any environment. They also require a large amount of storage space and consequently require similar processing capability, and consume more power which as a whole constrains the design and size of the mobile system. This thesis presents an alternative mapping system for storing and learning normal data in the environment namely the flexible region mapping system. Its structure can change to accommodate the distribution of normal data. As a result, data are mapped where they are measured and according to the size of the affected area. This thesis also investigates approaches for reducing false positives and to estimate the position of anomalous objects by taking advantage of the system’s mobility. A close range inspection strategy has also been developed to demonstrate how an autonomous mobile robot could use the results of novelty detection to perform further investigation of anomalous objects. The work in this thesis has been targeted to be applicable to any mobile systems that could localized themselves, particularly those that have limited resources in terms of data storage, physical size, processing power and power supply. The solution of mapping normal sensor measurements that is demonstrated in this thesis is most suitable for structured environments but it could be extended to more complex environments. Experiments were conducted in an artificial L-shaped environment as well as in a real office corridor. A mobile robot that carries different types of sensors particularly a laser range finder, an anemometer, a temperature sensor, an ambient light sensor, a chemical concentration sensor and an electromagnetic radiation sensor was used. The results show that the flexible region map used as few as 0.7% and 3.3% of the storage space required for a conventional grid map and a perception based map. The map can autonomously accommodate to changes in the normal condition of the environment. The implementation of the false positive filter developed in this thesis reduces the false positive rate by up to 20% compared to the unfiltered novelty detection results, when using noisy sensors at the highest sensitivity settings. Apart from that, the close range inspection strategy is shown to be capable of achieving up to 100% close range inspection coverage near the vicinity of an anomaly." @default.
- W2176738702 created "2016-06-24" @default.
- W2176738702 creator A5046228995 @default.
- W2176738702 date "2017-01-15" @default.
- W2176738702 modified "2023-09-27" @default.
- W2176738702 title "Novelty detection using a mobile robot : challenges and benefits" @default.
- W2176738702 cites W102464645 @default.
- W2176738702 cites W107715831 @default.
- W2176738702 cites W116412713 @default.
- W2176738702 cites W140238390 @default.
- W2176738702 cites W1506281249 @default.
- W2176738702 cites W1521843029 @default.
- W2176738702 cites W1581349285 @default.
- W2176738702 cites W1585686737 @default.
- W2176738702 cites W1598987408 @default.
- W2176738702 cites W1599888605 @default.
- W2176738702 cites W1601378499 @default.
- W2176738702 cites W1656165940 @default.
- W2176738702 cites W1863178183 @default.
- W2176738702 cites W1904894153 @default.
- W2176738702 cites W1967257064 @default.
- W2176738702 cites W1970502439 @default.
- W2176738702 cites W1975089519 @default.
- W2176738702 cites W1997872704 @default.
- W2176738702 cites W1998813085 @default.
- W2176738702 cites W2005516403 @default.
- W2176738702 cites W2014235936 @default.
- W2176738702 cites W2028022546 @default.
- W2176738702 cites W2029243826 @default.
- W2176738702 cites W2036176439 @default.
- W2176738702 cites W2067168270 @default.
- W2176738702 cites W2095952336 @default.
- W2176738702 cites W2096794105 @default.
- W2176738702 cites W2097856935 @default.
- W2176738702 cites W2098412395 @default.
- W2176738702 cites W2101502731 @default.
- W2176738702 cites W2102799651 @default.
- W2176738702 cites W2116581750 @default.
- W2176738702 cites W2118269922 @default.
- W2176738702 cites W2122430173 @default.
- W2176738702 cites W2122995048 @default.
- W2176738702 cites W2124394955 @default.
- W2176738702 cites W2127064334 @default.
- W2176738702 cites W2132711891 @default.
- W2176738702 cites W2135455100 @default.
- W2176738702 cites W2136269734 @default.
- W2176738702 cites W2143576344 @default.
- W2176738702 cites W2145338271 @default.
- W2176738702 cites W2148228392 @default.
- W2176738702 cites W2149087560 @default.
- W2176738702 cites W2151135734 @default.
- W2176738702 cites W2158751854 @default.
- W2176738702 cites W2165036656 @default.
- W2176738702 cites W2327569871 @default.
- W2176738702 cites W2483137123 @default.
- W2176738702 cites W2912293025 @default.
- W2176738702 cites W2927046682 @default.
- W2176738702 cites W2979932986 @default.
- W2176738702 cites W3020983971 @default.
- W2176738702 cites W642761005 @default.
- W2176738702 doi "https://doi.org/10.4225/03/587bff2979cb7" @default.
- W2176738702 hasPublicationYear "2017" @default.
- W2176738702 type Work @default.
- W2176738702 sameAs 2176738702 @default.
- W2176738702 citedByCount "0" @default.
- W2176738702 crossrefType "dissertation" @default.
- W2176738702 hasAuthorship W2176738702A5046228995 @default.
- W2176738702 hasConcept C131979681 @default.
- W2176738702 hasConcept C138885662 @default.
- W2176738702 hasConcept C154945302 @default.
- W2176738702 hasConcept C19966478 @default.
- W2176738702 hasConcept C27206212 @default.
- W2176738702 hasConcept C2776821279 @default.
- W2176738702 hasConcept C2778738651 @default.
- W2176738702 hasConcept C2778924833 @default.
- W2176738702 hasConcept C41008148 @default.
- W2176738702 hasConcept C64869954 @default.
- W2176738702 hasConcept C79403827 @default.
- W2176738702 hasConcept C90509273 @default.
- W2176738702 hasConceptScore W2176738702C131979681 @default.
- W2176738702 hasConceptScore W2176738702C138885662 @default.
- W2176738702 hasConceptScore W2176738702C154945302 @default.
- W2176738702 hasConceptScore W2176738702C19966478 @default.
- W2176738702 hasConceptScore W2176738702C27206212 @default.
- W2176738702 hasConceptScore W2176738702C2776821279 @default.
- W2176738702 hasConceptScore W2176738702C2778738651 @default.
- W2176738702 hasConceptScore W2176738702C2778924833 @default.
- W2176738702 hasConceptScore W2176738702C41008148 @default.
- W2176738702 hasConceptScore W2176738702C64869954 @default.
- W2176738702 hasConceptScore W2176738702C79403827 @default.
- W2176738702 hasConceptScore W2176738702C90509273 @default.
- W2176738702 hasLocation W21767387021 @default.
- W2176738702 hasOpenAccess W2176738702 @default.
- W2176738702 hasPrimaryLocation W21767387021 @default.
- W2176738702 hasRelatedWork W1254359513 @default.
- W2176738702 hasRelatedWork W1499144207 @default.
- W2176738702 hasRelatedWork W1574243650 @default.
- W2176738702 hasRelatedWork W1576470485 @default.
- W2176738702 hasRelatedWork W1956375534 @default.
- W2176738702 hasRelatedWork W2037803129 @default.