Matches in SemOpenAlex for { <https://semopenalex.org/work/W2178142829> ?p ?o ?g. }
- W2178142829 endingPage "e02756" @default.
- W2178142829 startingPage "e02756" @default.
- W2178142829 abstract "The accurate prediction of transmural stresses in arterial walls requires on the one hand robust and efficient numerical schemes for the solution of boundary value problems including fluid–structure interactions and on the other hand the use of a material model for the vessel wall that is able to capture the relevant features of the material behavior. One of the main contributions of this paper is the application of a highly nonlinear, polyconvex anisotropic structural model for the solid in the context of fluid–structure interaction, together with a suitable discretization. Additionally, the influence of viscoelasticity is investigated. The fluid–structure interaction problem is solved using a monolithic approach; that is, the nonlinear system is solved (after time and space discretizations) as a whole without splitting among its components. The linearized block systems are solved iteratively using parallel domain decomposition preconditioners. A simple – but nonsymmetric – curved geometry is proposed that is demonstrated to be suitable as a benchmark testbed for fluid–structure interaction simulations in biomechanics where nonlinear structural models are used. Based on the curved benchmark geometry, the influence of different material models, spatial discretizations, and meshes of varying refinement is investigated. It turns out that often-used standard displacement elements with linear shape functions are not sufficient to provide good approximations of the arterial wall stresses, whereas for standard displacement elements or F-bar formulations with quadratic shape functions, suitable results are obtained. For the time discretization, a second-order backward differentiation formula scheme is used. It is shown that the curved geometry enables the analysis of non-rotationally symmetric distributions of the mechanical fields. For instance, the maximal shear stresses in the fluid–structure interface are found to be higher in the inner curve that corresponds to clinical observations indicating a high plaque nucleation probability at such locations. Copyright © 2015 John Wiley & Sons, Ltd." @default.
- W2178142829 created "2016-06-24" @default.
- W2178142829 creator A5009866562 @default.
- W2178142829 creator A5012521841 @default.
- W2178142829 creator A5013754088 @default.
- W2178142829 creator A5016204858 @default.
- W2178142829 creator A5025038075 @default.
- W2178142829 creator A5041978201 @default.
- W2178142829 creator A5054059550 @default.
- W2178142829 creator A5067096341 @default.
- W2178142829 creator A5081654668 @default.
- W2178142829 date "2015-12-07" @default.
- W2178142829 modified "2023-10-03" @default.
- W2178142829 title "Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains" @default.
- W2178142829 cites W110895644 @default.
- W2178142829 cites W1500831274 @default.
- W2178142829 cites W1558129075 @default.
- W2178142829 cites W167788419 @default.
- W2178142829 cites W176401837 @default.
- W2178142829 cites W1902209341 @default.
- W2178142829 cites W1974115484 @default.
- W2178142829 cites W1975012923 @default.
- W2178142829 cites W1976844054 @default.
- W2178142829 cites W1977063638 @default.
- W2178142829 cites W1979217793 @default.
- W2178142829 cites W1982586636 @default.
- W2178142829 cites W1990804703 @default.
- W2178142829 cites W1996739475 @default.
- W2178142829 cites W1996864302 @default.
- W2178142829 cites W1998300105 @default.
- W2178142829 cites W2005821248 @default.
- W2178142829 cites W2011704720 @default.
- W2178142829 cites W2019075696 @default.
- W2178142829 cites W2019221864 @default.
- W2178142829 cites W2020920275 @default.
- W2178142829 cites W2023598501 @default.
- W2178142829 cites W2023774927 @default.
- W2178142829 cites W2029240087 @default.
- W2178142829 cites W2034434606 @default.
- W2178142829 cites W2036787781 @default.
- W2178142829 cites W2037730925 @default.
- W2178142829 cites W2042299302 @default.
- W2178142829 cites W2047972549 @default.
- W2178142829 cites W2048876801 @default.
- W2178142829 cites W2050206349 @default.
- W2178142829 cites W2054034220 @default.
- W2178142829 cites W2061748118 @default.
- W2178142829 cites W2065398449 @default.
- W2178142829 cites W2082835621 @default.
- W2178142829 cites W2084104651 @default.
- W2178142829 cites W2084131634 @default.
- W2178142829 cites W2085620291 @default.
- W2178142829 cites W2087556370 @default.
- W2178142829 cites W2088230448 @default.
- W2178142829 cites W2088703872 @default.
- W2178142829 cites W2090128972 @default.
- W2178142829 cites W2093753671 @default.
- W2178142829 cites W2101956120 @default.
- W2178142829 cites W2108590855 @default.
- W2178142829 cites W2109775863 @default.
- W2178142829 cites W2111400389 @default.
- W2178142829 cites W2112787727 @default.
- W2178142829 cites W2138531936 @default.
- W2178142829 cites W2138597693 @default.
- W2178142829 cites W2142862873 @default.
- W2178142829 cites W2142950247 @default.
- W2178142829 cites W2146396510 @default.
- W2178142829 cites W2148835848 @default.
- W2178142829 cites W2155567451 @default.
- W2178142829 cites W2158804477 @default.
- W2178142829 cites W2162650555 @default.
- W2178142829 cites W2163232451 @default.
- W2178142829 cites W2196074581 @default.
- W2178142829 cites W2248238750 @default.
- W2178142829 cites W3103960679 @default.
- W2178142829 cites W4236797139 @default.
- W2178142829 cites W4251820791 @default.
- W2178142829 cites W4252824607 @default.
- W2178142829 cites W74511397 @default.
- W2178142829 doi "https://doi.org/10.1002/cnm.2756" @default.
- W2178142829 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26509253" @default.
- W2178142829 hasPublicationYear "2015" @default.
- W2178142829 type Work @default.
- W2178142829 sameAs 2178142829 @default.
- W2178142829 citedByCount "35" @default.
- W2178142829 countsByYear W21781428292015 @default.
- W2178142829 countsByYear W21781428292016 @default.
- W2178142829 countsByYear W21781428292017 @default.
- W2178142829 countsByYear W21781428292018 @default.
- W2178142829 countsByYear W21781428292019 @default.
- W2178142829 countsByYear W21781428292020 @default.
- W2178142829 countsByYear W21781428292021 @default.
- W2178142829 countsByYear W21781428292022 @default.
- W2178142829 countsByYear W21781428292023 @default.
- W2178142829 crossrefType "journal-article" @default.
- W2178142829 hasAuthorship W2178142829A5009866562 @default.
- W2178142829 hasAuthorship W2178142829A5012521841 @default.
- W2178142829 hasAuthorship W2178142829A5013754088 @default.