Matches in SemOpenAlex for { <https://semopenalex.org/work/W2178448356> ?p ?o ?g. }
- W2178448356 endingPage "34" @default.
- W2178448356 startingPage "22" @default.
- W2178448356 abstract "For its crucial importance in the study of large-scale networks, many researchers devote to the detection of communities in various networks. It is now widely agreed that the communities usually overlap with each other. In some communities, there exist members that play a special role as hubs (also known as leaders), whose importance merits special attention. Moreover, it is also observed that some members of the network do not belong to any communities in a convincing way, and hence recognized as outliers. Failure to detect and exclude outliers will distort, sometimes significantly, the outcome of the detected communities. In short, it is preferable for a community detection method to detect all three structures altogether. This becomes even more interesting and also more challenging when we take the unsupervised assumption, that is, we do not assume the prior knowledge of the number K of communities. Our approach here is to define a novel generative model and formalize the detection of overlapping communities as well as hubs and outliers as an optimization problem on it. When K is given, we propose a normalized symmetric nonnegative matrix factorization algorithm based on Kullback–Leibler (KL) divergence to learn the parameters of the model. Otherwise, by combining KL divergence and prior model on parameters, we introduce another parameter learning method based on Bayesian symmetric nonnegative matrix factorization to learn the parameters of the model, while determining K. Therefore, we present a community detection method arguably in the most general sense, which detects all three structures altogether without prior knowledge of the number of communities. Finally, we test the proposed method on various real-world networks. The experimental results, in contrast to several state-of-art algorithms, indicate its superior performance over other ones in terms of both clustering accuracy and community quality." @default.
- W2178448356 created "2016-06-24" @default.
- W2178448356 creator A5009013876 @default.
- W2178448356 creator A5012455357 @default.
- W2178448356 creator A5013247988 @default.
- W2178448356 creator A5058010200 @default.
- W2178448356 creator A5068837264 @default.
- W2178448356 date "2016-03-01" @default.
- W2178448356 modified "2023-10-18" @default.
- W2178448356 title "The (un)supervised NMF methods for discovering overlapping communities as well as hubs and outliers in networks" @default.
- W2178448356 cites W1902027874 @default.
- W2178448356 cites W1971421925 @default.
- W2178448356 cites W1972675431 @default.
- W2178448356 cites W1985625141 @default.
- W2178448356 cites W2015953751 @default.
- W2178448356 cites W2017156466 @default.
- W2178448356 cites W2040513800 @default.
- W2178448356 cites W2047595357 @default.
- W2178448356 cites W2047923585 @default.
- W2178448356 cites W2050601254 @default.
- W2178448356 cites W2085143124 @default.
- W2178448356 cites W2086310719 @default.
- W2178448356 cites W2090649417 @default.
- W2178448356 cites W2112090702 @default.
- W2178448356 cites W2119571791 @default.
- W2178448356 cites W2119998616 @default.
- W2178448356 cites W2128366083 @default.
- W2178448356 cites W2131681506 @default.
- W2178448356 cites W2134724105 @default.
- W2178448356 cites W2137962371 @default.
- W2178448356 cites W2151936673 @default.
- W2178448356 cites W2155167324 @default.
- W2178448356 cites W2156834525 @default.
- W2178448356 cites W2164928285 @default.
- W2178448356 cites W3100069540 @default.
- W2178448356 cites W3101413764 @default.
- W2178448356 doi "https://doi.org/10.1016/j.physa.2015.11.016" @default.
- W2178448356 hasPublicationYear "2016" @default.
- W2178448356 type Work @default.
- W2178448356 sameAs 2178448356 @default.
- W2178448356 citedByCount "14" @default.
- W2178448356 countsByYear W21784483562016 @default.
- W2178448356 countsByYear W21784483562017 @default.
- W2178448356 countsByYear W21784483562018 @default.
- W2178448356 countsByYear W21784483562019 @default.
- W2178448356 countsByYear W21784483562020 @default.
- W2178448356 countsByYear W21784483562022 @default.
- W2178448356 countsByYear W21784483562023 @default.
- W2178448356 crossrefType "journal-article" @default.
- W2178448356 hasAuthorship W2178448356A5009013876 @default.
- W2178448356 hasAuthorship W2178448356A5012455357 @default.
- W2178448356 hasAuthorship W2178448356A5013247988 @default.
- W2178448356 hasAuthorship W2178448356A5058010200 @default.
- W2178448356 hasAuthorship W2178448356A5068837264 @default.
- W2178448356 hasConcept C105795698 @default.
- W2178448356 hasConcept C107673813 @default.
- W2178448356 hasConcept C119857082 @default.
- W2178448356 hasConcept C121332964 @default.
- W2178448356 hasConcept C124101348 @default.
- W2178448356 hasConcept C133079900 @default.
- W2178448356 hasConcept C138885662 @default.
- W2178448356 hasConcept C152671427 @default.
- W2178448356 hasConcept C153180895 @default.
- W2178448356 hasConcept C154945302 @default.
- W2178448356 hasConcept C158693339 @default.
- W2178448356 hasConcept C207390915 @default.
- W2178448356 hasConcept C33923547 @default.
- W2178448356 hasConcept C41008148 @default.
- W2178448356 hasConcept C41895202 @default.
- W2178448356 hasConcept C42355184 @default.
- W2178448356 hasConcept C62520636 @default.
- W2178448356 hasConcept C79337645 @default.
- W2178448356 hasConceptScore W2178448356C105795698 @default.
- W2178448356 hasConceptScore W2178448356C107673813 @default.
- W2178448356 hasConceptScore W2178448356C119857082 @default.
- W2178448356 hasConceptScore W2178448356C121332964 @default.
- W2178448356 hasConceptScore W2178448356C124101348 @default.
- W2178448356 hasConceptScore W2178448356C133079900 @default.
- W2178448356 hasConceptScore W2178448356C138885662 @default.
- W2178448356 hasConceptScore W2178448356C152671427 @default.
- W2178448356 hasConceptScore W2178448356C153180895 @default.
- W2178448356 hasConceptScore W2178448356C154945302 @default.
- W2178448356 hasConceptScore W2178448356C158693339 @default.
- W2178448356 hasConceptScore W2178448356C207390915 @default.
- W2178448356 hasConceptScore W2178448356C33923547 @default.
- W2178448356 hasConceptScore W2178448356C41008148 @default.
- W2178448356 hasConceptScore W2178448356C41895202 @default.
- W2178448356 hasConceptScore W2178448356C42355184 @default.
- W2178448356 hasConceptScore W2178448356C62520636 @default.
- W2178448356 hasConceptScore W2178448356C79337645 @default.
- W2178448356 hasFunder F4320321001 @default.
- W2178448356 hasFunder F4320321106 @default.
- W2178448356 hasFunder F4320321133 @default.
- W2178448356 hasFunder F4320335773 @default.
- W2178448356 hasFunder F4320335777 @default.
- W2178448356 hasLocation W21784483561 @default.
- W2178448356 hasOpenAccess W2178448356 @default.
- W2178448356 hasPrimaryLocation W21784483561 @default.