Matches in SemOpenAlex for { <https://semopenalex.org/work/W2178780443> ?p ?o ?g. }
- W2178780443 abstract "Abstract Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones." @default.
- W2178780443 created "2016-06-24" @default.
- W2178780443 creator A5008201587 @default.
- W2178780443 creator A5023282904 @default.
- W2178780443 creator A5042520521 @default.
- W2178780443 creator A5050725783 @default.
- W2178780443 date "2015-12-01" @default.
- W2178780443 modified "2023-10-02" @default.
- W2178780443 title "Selective ensemble modeling based on nonlinear frequency spectral feature extraction for predicting load parameter in ball mills" @default.
- W2178780443 cites W1496929357 @default.
- W2178780443 cites W1596717185 @default.
- W2178780443 cites W1744236767 @default.
- W2178780443 cites W1966323298 @default.
- W2178780443 cites W1971587725 @default.
- W2178780443 cites W1987936550 @default.
- W2178780443 cites W1996759665 @default.
- W2178780443 cites W2000651380 @default.
- W2178780443 cites W2000872950 @default.
- W2178780443 cites W2007860489 @default.
- W2178780443 cites W2032355746 @default.
- W2178780443 cites W2036255459 @default.
- W2178780443 cites W2072128103 @default.
- W2178780443 cites W2078976036 @default.
- W2178780443 cites W2085862958 @default.
- W2178780443 cites W2100128988 @default.
- W2178780443 cites W2108710077 @default.
- W2178780443 cites W2124547294 @default.
- W2178780443 cites W2125569215 @default.
- W2178780443 cites W2130253000 @default.
- W2178780443 cites W2139269942 @default.
- W2178780443 cites W2147768505 @default.
- W2178780443 cites W2152880320 @default.
- W2178780443 cites W2172081788 @default.
- W2178780443 cites W2322243561 @default.
- W2178780443 cites W2349621470 @default.
- W2178780443 cites W2372666532 @default.
- W2178780443 cites W2373953725 @default.
- W2178780443 cites W2393263262 @default.
- W2178780443 cites W3141197946 @default.
- W2178780443 doi "https://doi.org/10.1016/j.cjche.2015.10.006" @default.
- W2178780443 hasPublicationYear "2015" @default.
- W2178780443 type Work @default.
- W2178780443 sameAs 2178780443 @default.
- W2178780443 citedByCount "6" @default.
- W2178780443 countsByYear W21787804432017 @default.
- W2178780443 countsByYear W21787804432018 @default.
- W2178780443 countsByYear W21787804432020 @default.
- W2178780443 countsByYear W21787804432022 @default.
- W2178780443 countsByYear W21787804432023 @default.
- W2178780443 crossrefType "journal-article" @default.
- W2178780443 hasAuthorship W2178780443A5008201587 @default.
- W2178780443 hasAuthorship W2178780443A5023282904 @default.
- W2178780443 hasAuthorship W2178780443A5042520521 @default.
- W2178780443 hasAuthorship W2178780443A5050725783 @default.
- W2178780443 hasConcept C105795698 @default.
- W2178780443 hasConcept C106192678 @default.
- W2178780443 hasConcept C119857082 @default.
- W2178780443 hasConcept C121332964 @default.
- W2178780443 hasConcept C153180895 @default.
- W2178780443 hasConcept C154945302 @default.
- W2178780443 hasConcept C158622935 @default.
- W2178780443 hasConcept C22354355 @default.
- W2178780443 hasConcept C33923547 @default.
- W2178780443 hasConcept C41008148 @default.
- W2178780443 hasConcept C52622490 @default.
- W2178780443 hasConcept C62520636 @default.
- W2178780443 hasConceptScore W2178780443C105795698 @default.
- W2178780443 hasConceptScore W2178780443C106192678 @default.
- W2178780443 hasConceptScore W2178780443C119857082 @default.
- W2178780443 hasConceptScore W2178780443C121332964 @default.
- W2178780443 hasConceptScore W2178780443C153180895 @default.
- W2178780443 hasConceptScore W2178780443C154945302 @default.
- W2178780443 hasConceptScore W2178780443C158622935 @default.
- W2178780443 hasConceptScore W2178780443C22354355 @default.
- W2178780443 hasConceptScore W2178780443C33923547 @default.
- W2178780443 hasConceptScore W2178780443C41008148 @default.
- W2178780443 hasConceptScore W2178780443C52622490 @default.
- W2178780443 hasConceptScore W2178780443C62520636 @default.
- W2178780443 hasLocation W21787804431 @default.
- W2178780443 hasOpenAccess W2178780443 @default.
- W2178780443 hasPrimaryLocation W21787804431 @default.
- W2178780443 hasRelatedWork W1146549874 @default.
- W2178780443 hasRelatedWork W1967380646 @default.
- W2178780443 hasRelatedWork W1986497382 @default.
- W2178780443 hasRelatedWork W2014274316 @default.
- W2178780443 hasRelatedWork W2160501825 @default.
- W2178780443 hasRelatedWork W2276355108 @default.
- W2178780443 hasRelatedWork W2348795632 @default.
- W2178780443 hasRelatedWork W2371552237 @default.
- W2178780443 hasRelatedWork W2502005356 @default.
- W2178780443 hasRelatedWork W2765166796 @default.
- W2178780443 hasRelatedWork W2798459260 @default.
- W2178780443 hasRelatedWork W2896307377 @default.
- W2178780443 hasRelatedWork W2904090204 @default.
- W2178780443 hasRelatedWork W2980122601 @default.
- W2178780443 hasRelatedWork W2982535726 @default.
- W2178780443 hasRelatedWork W3113686784 @default.
- W2178780443 hasRelatedWork W3202816129 @default.
- W2178780443 hasRelatedWork W2360804775 @default.
- W2178780443 hasRelatedWork W2858563594 @default.