Matches in SemOpenAlex for { <https://semopenalex.org/work/W2179047587> ?p ?o ?g. }
- W2179047587 abstract "For genomic prediction and genome-wide association studies (GWAS) using mixed models, covariance between individuals is estimated using molecular markers. Based on the properties of mixed models, using available molecular data for prediction is optimal if this covariance is known. Under this assumption, adding individuals to the analysis should never be detrimental. However, some empirical studies showed that increasing training population size decreased prediction accuracy. Recently, results from theoretical models indicated that even if marker density is high and the genetic architecture of traits is controlled by many loci with small additive effects, the covariance between individuals, which depends on relationships at causal loci, is not always well estimated by the whole-genome kinship. We propose an alternative covariance estimator named K-kernel, to account for potential genetic heterogeneity between populations that is characterized by a lack of genetic correlation, and to limit the information flow between a priori unknown populations in a trait-specific manner. This is similar to a multi-trait model and parameters are estimated by REML and, in extreme cases, it can allow for an independent genetic architecture between populations. As such, K-kernel is useful to study the problem of the design of training populations. K-kernel was compared to other covariance estimators or kernels to examine its fit to the data, cross-validated accuracy and suitability for GWAS on several datasets. It provides a significantly better fit to the data than the genomic best linear unbiased prediction model and, in some cases it performs better than other kernels such as the Gaussian kernel, as shown by an empirical null distribution. In GWAS simulations, alternative kernels control type I errors as well as or better than the classical whole-genome kinship and increase statistical power. No or small gains were observed in cross-validated prediction accuracy. This alternative covariance estimator can be used to gain insight into trait-specific genetic heterogeneity by identifying relevant sub-populations that lack genetic correlation between them. Genetic correlation can be 0 between identified sub-populations by performing automatic selection of relevant sets of individuals to be included in the training population. It may also increase statistical power in GWAS." @default.
- W2179047587 created "2016-06-24" @default.
- W2179047587 creator A5044432269 @default.
- W2179047587 creator A5072910716 @default.
- W2179047587 date "2015-11-26" @default.
- W2179047587 modified "2023-10-15" @default.
- W2179047587 title "An alternative covariance estimator to investigate genetic heterogeneity in populations" @default.
- W2179047587 cites W1607760198 @default.
- W2179047587 cites W1645227518 @default.
- W2179047587 cites W1969847116 @default.
- W2179047587 cites W1988200920 @default.
- W2179047587 cites W1994910261 @default.
- W2179047587 cites W2017586115 @default.
- W2179047587 cites W2034433729 @default.
- W2179047587 cites W2044921269 @default.
- W2179047587 cites W2061187129 @default.
- W2179047587 cites W2062125287 @default.
- W2179047587 cites W2064013109 @default.
- W2179047587 cites W2067715889 @default.
- W2179047587 cites W2099688984 @default.
- W2179047587 cites W2108978337 @default.
- W2179047587 cites W2113502539 @default.
- W2179047587 cites W2116056560 @default.
- W2179047587 cites W2117709702 @default.
- W2179047587 cites W2119030084 @default.
- W2179047587 cites W2127843966 @default.
- W2179047587 cites W2134036574 @default.
- W2179047587 cites W2134049753 @default.
- W2179047587 cites W2135462408 @default.
- W2179047587 cites W2141916112 @default.
- W2179047587 cites W2142635246 @default.
- W2179047587 cites W2150448009 @default.
- W2179047587 cites W2154522026 @default.
- W2179047587 cites W2156963627 @default.
- W2179047587 cites W2164056841 @default.
- W2179047587 cites W2164567778 @default.
- W2179047587 cites W2166033750 @default.
- W2179047587 cites W2168104724 @default.
- W2179047587 cites W2170253902 @default.
- W2179047587 cites W4206653471 @default.
- W2179047587 doi "https://doi.org/10.1186/s12711-015-0171-z" @default.
- W2179047587 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4661961" @default.
- W2179047587 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26612537" @default.
- W2179047587 hasPublicationYear "2015" @default.
- W2179047587 type Work @default.
- W2179047587 sameAs 2179047587 @default.
- W2179047587 citedByCount "12" @default.
- W2179047587 countsByYear W21790475872016 @default.
- W2179047587 countsByYear W21790475872017 @default.
- W2179047587 countsByYear W21790475872019 @default.
- W2179047587 countsByYear W21790475872020 @default.
- W2179047587 countsByYear W21790475872021 @default.
- W2179047587 countsByYear W21790475872022 @default.
- W2179047587 crossrefType "journal-article" @default.
- W2179047587 hasAuthorship W2179047587A5044432269 @default.
- W2179047587 hasAuthorship W2179047587A5072910716 @default.
- W2179047587 hasBestOaLocation W21790475871 @default.
- W2179047587 hasConcept C103545067 @default.
- W2179047587 hasConcept C104317684 @default.
- W2179047587 hasConcept C105795698 @default.
- W2179047587 hasConcept C106208931 @default.
- W2179047587 hasConcept C114614502 @default.
- W2179047587 hasConcept C119857082 @default.
- W2179047587 hasConcept C135763542 @default.
- W2179047587 hasConcept C144024400 @default.
- W2179047587 hasConcept C149923435 @default.
- W2179047587 hasConcept C153209595 @default.
- W2179047587 hasConcept C153720581 @default.
- W2179047587 hasConcept C163175372 @default.
- W2179047587 hasConcept C178650346 @default.
- W2179047587 hasConcept C185142706 @default.
- W2179047587 hasConcept C185429906 @default.
- W2179047587 hasConcept C2908647359 @default.
- W2179047587 hasConcept C33923547 @default.
- W2179047587 hasConcept C41008148 @default.
- W2179047587 hasConcept C54355233 @default.
- W2179047587 hasConcept C74193536 @default.
- W2179047587 hasConcept C81917197 @default.
- W2179047587 hasConcept C81941488 @default.
- W2179047587 hasConcept C86803240 @default.
- W2179047587 hasConcept C9287583 @default.
- W2179047587 hasConceptScore W2179047587C103545067 @default.
- W2179047587 hasConceptScore W2179047587C104317684 @default.
- W2179047587 hasConceptScore W2179047587C105795698 @default.
- W2179047587 hasConceptScore W2179047587C106208931 @default.
- W2179047587 hasConceptScore W2179047587C114614502 @default.
- W2179047587 hasConceptScore W2179047587C119857082 @default.
- W2179047587 hasConceptScore W2179047587C135763542 @default.
- W2179047587 hasConceptScore W2179047587C144024400 @default.
- W2179047587 hasConceptScore W2179047587C149923435 @default.
- W2179047587 hasConceptScore W2179047587C153209595 @default.
- W2179047587 hasConceptScore W2179047587C153720581 @default.
- W2179047587 hasConceptScore W2179047587C163175372 @default.
- W2179047587 hasConceptScore W2179047587C178650346 @default.
- W2179047587 hasConceptScore W2179047587C185142706 @default.
- W2179047587 hasConceptScore W2179047587C185429906 @default.
- W2179047587 hasConceptScore W2179047587C2908647359 @default.
- W2179047587 hasConceptScore W2179047587C33923547 @default.
- W2179047587 hasConceptScore W2179047587C41008148 @default.
- W2179047587 hasConceptScore W2179047587C54355233 @default.