Matches in SemOpenAlex for { <https://semopenalex.org/work/W2179766089> ?p ?o ?g. }
- W2179766089 abstract "Big data techniques has been applied to power grid for the evaluation and prediction of grid conditions. However, the raw data quality rarely can meet the requirement of precise data analytics since raw data set usually contains samples with missing data to which the common data mining models are sensitive. Though classic interpolation or neural network methods can been used to fill the gaps of missing data, their predicted data often fail to fit the rules of power grid conditions. This paper presents a machine learning framework (OR_MLF) to improve the prediction accuracy for datasets with missing data points, which mainly combines preprocessing, optimizing support vector machine (OSVM) and refining SVM (RSVM). On top of the OSVM engine, the scheme introduces dedicated data training strategies. First, the original data originating from data generation facilities is preprocessed through standardization. Traditional SVM is then trained to obtain a preliminary prediction model. Next, the optimized SVM predictors are achieved with new training data set, which is extracted based on the preliminary prediction model. Finally, the missing data prediction result depending on OSVM is selectively inputted into the traditional SVM and the refined SVM is lastly accomplished. We test the OR_MLF framework on missing data prediction of power transformers in power grid system. The experimental results show that the predictors based on the proposed framework achieve lower mean square error than traditional ones. Therefore, the framework OR_MLF would be a good candidate to predict the missing data in power grid system." @default.
- W2179766089 created "2016-06-24" @default.
- W2179766089 creator A5014623458 @default.
- W2179766089 creator A5047932411 @default.
- W2179766089 creator A5061924587 @default.
- W2179766089 creator A5067450721 @default.
- W2179766089 creator A5067688599 @default.
- W2179766089 creator A5079461118 @default.
- W2179766089 creator A5086260915 @default.
- W2179766089 creator A5087716003 @default.
- W2179766089 date "2015-08-01" @default.
- W2179766089 modified "2023-10-16" @default.
- W2179766089 title "Improving Power Grid Monitoring Data Quality: An Efficient Machine Learning Framework for Missing Data Prediction" @default.
- W2179766089 cites W1569211635 @default.
- W2179766089 cites W1983710014 @default.
- W2179766089 cites W1993220086 @default.
- W2179766089 cites W2004291985 @default.
- W2179766089 cites W2026561823 @default.
- W2179766089 cites W2032594557 @default.
- W2179766089 cites W2073234545 @default.
- W2179766089 cites W2096762662 @default.
- W2179766089 cites W2107116457 @default.
- W2179766089 cites W2164303714 @default.
- W2179766089 cites W2373744349 @default.
- W2179766089 cites W2539369127 @default.
- W2179766089 cites W2540311239 @default.
- W2179766089 cites W4230674625 @default.
- W2179766089 cites W4239510810 @default.
- W2179766089 doi "https://doi.org/10.1109/hpcc-css-icess.2015.16" @default.
- W2179766089 hasPublicationYear "2015" @default.
- W2179766089 type Work @default.
- W2179766089 sameAs 2179766089 @default.
- W2179766089 citedByCount "20" @default.
- W2179766089 countsByYear W21797660892016 @default.
- W2179766089 countsByYear W21797660892017 @default.
- W2179766089 countsByYear W21797660892018 @default.
- W2179766089 countsByYear W21797660892019 @default.
- W2179766089 countsByYear W21797660892020 @default.
- W2179766089 countsByYear W21797660892021 @default.
- W2179766089 countsByYear W21797660892022 @default.
- W2179766089 crossrefType "proceedings-article" @default.
- W2179766089 hasAuthorship W2179766089A5014623458 @default.
- W2179766089 hasAuthorship W2179766089A5047932411 @default.
- W2179766089 hasAuthorship W2179766089A5061924587 @default.
- W2179766089 hasAuthorship W2179766089A5067450721 @default.
- W2179766089 hasAuthorship W2179766089A5067688599 @default.
- W2179766089 hasAuthorship W2179766089A5079461118 @default.
- W2179766089 hasAuthorship W2179766089A5086260915 @default.
- W2179766089 hasAuthorship W2179766089A5087716003 @default.
- W2179766089 hasConcept C10551718 @default.
- W2179766089 hasConcept C119857082 @default.
- W2179766089 hasConcept C12267149 @default.
- W2179766089 hasConcept C124101348 @default.
- W2179766089 hasConcept C132964779 @default.
- W2179766089 hasConcept C154945302 @default.
- W2179766089 hasConcept C187691185 @default.
- W2179766089 hasConcept C199360897 @default.
- W2179766089 hasConcept C2524010 @default.
- W2179766089 hasConcept C33923547 @default.
- W2179766089 hasConcept C34736171 @default.
- W2179766089 hasConcept C41008148 @default.
- W2179766089 hasConcept C50644808 @default.
- W2179766089 hasConcept C58489278 @default.
- W2179766089 hasConcept C67186912 @default.
- W2179766089 hasConcept C75684735 @default.
- W2179766089 hasConcept C77088390 @default.
- W2179766089 hasConcept C9357733 @default.
- W2179766089 hasConceptScore W2179766089C10551718 @default.
- W2179766089 hasConceptScore W2179766089C119857082 @default.
- W2179766089 hasConceptScore W2179766089C12267149 @default.
- W2179766089 hasConceptScore W2179766089C124101348 @default.
- W2179766089 hasConceptScore W2179766089C132964779 @default.
- W2179766089 hasConceptScore W2179766089C154945302 @default.
- W2179766089 hasConceptScore W2179766089C187691185 @default.
- W2179766089 hasConceptScore W2179766089C199360897 @default.
- W2179766089 hasConceptScore W2179766089C2524010 @default.
- W2179766089 hasConceptScore W2179766089C33923547 @default.
- W2179766089 hasConceptScore W2179766089C34736171 @default.
- W2179766089 hasConceptScore W2179766089C41008148 @default.
- W2179766089 hasConceptScore W2179766089C50644808 @default.
- W2179766089 hasConceptScore W2179766089C58489278 @default.
- W2179766089 hasConceptScore W2179766089C67186912 @default.
- W2179766089 hasConceptScore W2179766089C75684735 @default.
- W2179766089 hasConceptScore W2179766089C77088390 @default.
- W2179766089 hasConceptScore W2179766089C9357733 @default.
- W2179766089 hasLocation W21797660891 @default.
- W2179766089 hasOpenAccess W2179766089 @default.
- W2179766089 hasPrimaryLocation W21797660891 @default.
- W2179766089 hasRelatedWork W2091530068 @default.
- W2179766089 hasRelatedWork W2106760772 @default.
- W2179766089 hasRelatedWork W2263184620 @default.
- W2179766089 hasRelatedWork W2384998121 @default.
- W2179766089 hasRelatedWork W2611466779 @default.
- W2179766089 hasRelatedWork W2983866626 @default.
- W2179766089 hasRelatedWork W2991159430 @default.
- W2179766089 hasRelatedWork W3086422166 @default.
- W2179766089 hasRelatedWork W31185250 @default.
- W2179766089 hasRelatedWork W4213068940 @default.
- W2179766089 isParatext "false" @default.
- W2179766089 isRetracted "false" @default.