Matches in SemOpenAlex for { <https://semopenalex.org/work/W2180106900> ?p ?o ?g. }
- W2180106900 endingPage "35" @default.
- W2180106900 startingPage "26" @default.
- W2180106900 abstract "There is no doubt that snow cover plays an important role in the hydrological cycle of mountainous basins. Therefore, it is essential to measure snow parameters such as snow depth and snow water equivalent in these areas. The aim of this study is to estimate the snow depth from terrain parameters in the Sakhvid Basin, Iran using artificial neural networks (ANNs) and M5 algorithm of decision tree. For this purpose, snow depths were measured in 206 sites based on systematic network. Furthermore, 30 terrain parameters were extracted from a digital elevation model (DEM) of the basin. The results indicated that the decision tree model is the most suitable method to estimate snow depth in the study area with a Nash–Sutcliffe Efficiency (Ens) of 0.80, followed by ANNs with an Ens of 0.73. Moreover, the most significant parameters in the M5 decision tree algorithm are: channel network base level, stream power, wetness index and height." @default.
- W2180106900 created "2016-06-24" @default.
- W2180106900 creator A5018692760 @default.
- W2180106900 creator A5056756521 @default.
- W2180106900 creator A5062829882 @default.
- W2180106900 date "2016-02-01" @default.
- W2180106900 modified "2023-09-23" @default.
- W2180106900 title "Comparison of artificial neural network and decision tree models in estimating spatial distribution of snow depth in a semi-arid region of Iran" @default.
- W2180106900 cites W1964588226 @default.
- W2180106900 cites W1970360626 @default.
- W2180106900 cites W1977064421 @default.
- W2180106900 cites W1979539465 @default.
- W2180106900 cites W1987619581 @default.
- W2180106900 cites W2004655349 @default.
- W2180106900 cites W2013725197 @default.
- W2180106900 cites W2016001035 @default.
- W2180106900 cites W2020236162 @default.
- W2180106900 cites W2021920486 @default.
- W2180106900 cites W2025590911 @default.
- W2180106900 cites W2027999255 @default.
- W2180106900 cites W2038301573 @default.
- W2180106900 cites W2053026343 @default.
- W2180106900 cites W2062087947 @default.
- W2180106900 cites W2066996619 @default.
- W2180106900 cites W2067459355 @default.
- W2180106900 cites W2070219271 @default.
- W2180106900 cites W2070904642 @default.
- W2180106900 cites W2071957257 @default.
- W2180106900 cites W2079770016 @default.
- W2180106900 cites W2081341855 @default.
- W2180106900 cites W2082156006 @default.
- W2180106900 cites W2087550825 @default.
- W2180106900 cites W2106354542 @default.
- W2180106900 cites W2113650320 @default.
- W2180106900 cites W2135015721 @default.
- W2180106900 cites W2147655187 @default.
- W2180106900 cites W2160594640 @default.
- W2180106900 cites W2162875274 @default.
- W2180106900 cites W2170100555 @default.
- W2180106900 cites W4245590060 @default.
- W2180106900 doi "https://doi.org/10.1016/j.coldregions.2015.11.004" @default.
- W2180106900 hasPublicationYear "2016" @default.
- W2180106900 type Work @default.
- W2180106900 sameAs 2180106900 @default.
- W2180106900 citedByCount "33" @default.
- W2180106900 countsByYear W21801069002016 @default.
- W2180106900 countsByYear W21801069002017 @default.
- W2180106900 countsByYear W21801069002018 @default.
- W2180106900 countsByYear W21801069002019 @default.
- W2180106900 countsByYear W21801069002020 @default.
- W2180106900 countsByYear W21801069002021 @default.
- W2180106900 countsByYear W21801069002022 @default.
- W2180106900 countsByYear W21801069002023 @default.
- W2180106900 crossrefType "journal-article" @default.
- W2180106900 hasAuthorship W2180106900A5018692760 @default.
- W2180106900 hasAuthorship W2180106900A5056756521 @default.
- W2180106900 hasAuthorship W2180106900A5062829882 @default.
- W2180106900 hasConcept C109007969 @default.
- W2180106900 hasConcept C114793014 @default.
- W2180106900 hasConcept C119857082 @default.
- W2180106900 hasConcept C127313418 @default.
- W2180106900 hasConcept C161840515 @default.
- W2180106900 hasConcept C181843262 @default.
- W2180106900 hasConcept C187320778 @default.
- W2180106900 hasConcept C197046000 @default.
- W2180106900 hasConcept C205649164 @default.
- W2180106900 hasConcept C2524010 @default.
- W2180106900 hasConcept C33923547 @default.
- W2180106900 hasConcept C37054046 @default.
- W2180106900 hasConcept C39432304 @default.
- W2180106900 hasConcept C41008148 @default.
- W2180106900 hasConcept C50644808 @default.
- W2180106900 hasConcept C58640448 @default.
- W2180106900 hasConcept C62649853 @default.
- W2180106900 hasConcept C76886044 @default.
- W2180106900 hasConcept C84525736 @default.
- W2180106900 hasConceptScore W2180106900C109007969 @default.
- W2180106900 hasConceptScore W2180106900C114793014 @default.
- W2180106900 hasConceptScore W2180106900C119857082 @default.
- W2180106900 hasConceptScore W2180106900C127313418 @default.
- W2180106900 hasConceptScore W2180106900C161840515 @default.
- W2180106900 hasConceptScore W2180106900C181843262 @default.
- W2180106900 hasConceptScore W2180106900C187320778 @default.
- W2180106900 hasConceptScore W2180106900C197046000 @default.
- W2180106900 hasConceptScore W2180106900C205649164 @default.
- W2180106900 hasConceptScore W2180106900C2524010 @default.
- W2180106900 hasConceptScore W2180106900C33923547 @default.
- W2180106900 hasConceptScore W2180106900C37054046 @default.
- W2180106900 hasConceptScore W2180106900C39432304 @default.
- W2180106900 hasConceptScore W2180106900C41008148 @default.
- W2180106900 hasConceptScore W2180106900C50644808 @default.
- W2180106900 hasConceptScore W2180106900C58640448 @default.
- W2180106900 hasConceptScore W2180106900C62649853 @default.
- W2180106900 hasConceptScore W2180106900C76886044 @default.
- W2180106900 hasConceptScore W2180106900C84525736 @default.
- W2180106900 hasLocation W21801069001 @default.
- W2180106900 hasOpenAccess W2180106900 @default.
- W2180106900 hasPrimaryLocation W21801069001 @default.