Matches in SemOpenAlex for { <https://semopenalex.org/work/W2180186136> ?p ?o ?g. }
- W2180186136 abstract "Today's researchers have access to an unprecedented range of powerful machine learning tools with which to build models for classifying samples according to their metabolomic profile (e.g. separating diseased samples from healthy controls). However, such powerful tools need to be used with caution and the diagnostic performance of models produced by them should be rigorously evaluated if their output is to be believed. This involves considerable processing time, and has hitherto required expert knowledge in machine learning. By adopting a constrained nonlinear simplex optimisation for the tuning of support vector machines (SVMs) we have reduced SVM training times more than tenfold compared to a traditional grid search, allowing us to implement a high performance R package that makes it possible for a typical bench scientist to produce powerful SVM ensemble classifiers within a reasonable timescale, with automated bootstrapped training and rigorous permutation testing. This puts a state-of-the-art open source multivariate classification pipeline into the hands of every metabolomics researcher, allowing them to build robust classification models with realistic performance metrics." @default.
- W2180186136 created "2016-06-24" @default.
- W2180186136 creator A5001611033 @default.
- W2180186136 creator A5002888756 @default.
- W2180186136 date "2015-11-21" @default.
- W2180186136 modified "2023-09-23" @default.
- W2180186136 title "Novel application of heuristic optimisation enables the creation and thorough evaluation of robust support vector machine ensembles for machine learning applications" @default.
- W2180186136 cites W1496317909 @default.
- W2180186136 cites W1534477342 @default.
- W2180186136 cites W1563088657 @default.
- W2180186136 cites W1963678392 @default.
- W2180186136 cites W1975775976 @default.
- W2180186136 cites W1980801609 @default.
- W2180186136 cites W1985700489 @default.
- W2180186136 cites W1987972238 @default.
- W2180186136 cites W1989600244 @default.
- W2180186136 cites W1992483596 @default.
- W2180186136 cites W1995341919 @default.
- W2180186136 cites W1995945562 @default.
- W2180186136 cites W2008056655 @default.
- W2180186136 cites W2008322864 @default.
- W2180186136 cites W2016313439 @default.
- W2180186136 cites W2018742491 @default.
- W2180186136 cites W2024991751 @default.
- W2180186136 cites W2029279587 @default.
- W2180186136 cites W2029372760 @default.
- W2180186136 cites W2030402758 @default.
- W2180186136 cites W2032179728 @default.
- W2180186136 cites W2047360936 @default.
- W2180186136 cites W2050657627 @default.
- W2180186136 cites W2073503722 @default.
- W2180186136 cites W2076118331 @default.
- W2180186136 cites W2076723282 @default.
- W2180186136 cites W2081480383 @default.
- W2180186136 cites W2087347434 @default.
- W2180186136 cites W2089181989 @default.
- W2180186136 cites W2091634599 @default.
- W2180186136 cites W2098368939 @default.
- W2180186136 cites W2100805904 @default.
- W2180186136 cites W2104676838 @default.
- W2180186136 cites W2105514151 @default.
- W2180186136 cites W2112081648 @default.
- W2180186136 cites W2117897510 @default.
- W2180186136 cites W2129812501 @default.
- W2180186136 cites W2131329059 @default.
- W2180186136 cites W2137983211 @default.
- W2180186136 cites W2142114945 @default.
- W2180186136 cites W2158001550 @default.
- W2180186136 cites W2161336914 @default.
- W2180186136 cites W2163918103 @default.
- W2180186136 cites W2164583936 @default.
- W2180186136 cites W2171074980 @default.
- W2180186136 cites W2172000360 @default.
- W2180186136 cites W2492307518 @default.
- W2180186136 cites W2911964244 @default.
- W2180186136 cites W4244024004 @default.
- W2180186136 cites W4250469042 @default.
- W2180186136 doi "https://doi.org/10.1007/s11306-015-0894-4" @default.
- W2180186136 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4655007" @default.
- W2180186136 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26617479" @default.
- W2180186136 hasPublicationYear "2015" @default.
- W2180186136 type Work @default.
- W2180186136 sameAs 2180186136 @default.
- W2180186136 citedByCount "14" @default.
- W2180186136 countsByYear W21801861362017 @default.
- W2180186136 countsByYear W21801861362018 @default.
- W2180186136 countsByYear W21801861362019 @default.
- W2180186136 countsByYear W21801861362020 @default.
- W2180186136 countsByYear W21801861362021 @default.
- W2180186136 crossrefType "journal-article" @default.
- W2180186136 hasAuthorship W2180186136A5001611033 @default.
- W2180186136 hasAuthorship W2180186136A5002888756 @default.
- W2180186136 hasBestOaLocation W21801861361 @default.
- W2180186136 hasConcept C10485038 @default.
- W2180186136 hasConcept C119857082 @default.
- W2180186136 hasConcept C12267149 @default.
- W2180186136 hasConcept C124101348 @default.
- W2180186136 hasConcept C154945302 @default.
- W2180186136 hasConcept C173801870 @default.
- W2180186136 hasConcept C199360897 @default.
- W2180186136 hasConcept C41008148 @default.
- W2180186136 hasConcept C43521106 @default.
- W2180186136 hasConceptScore W2180186136C10485038 @default.
- W2180186136 hasConceptScore W2180186136C119857082 @default.
- W2180186136 hasConceptScore W2180186136C12267149 @default.
- W2180186136 hasConceptScore W2180186136C124101348 @default.
- W2180186136 hasConceptScore W2180186136C154945302 @default.
- W2180186136 hasConceptScore W2180186136C173801870 @default.
- W2180186136 hasConceptScore W2180186136C199360897 @default.
- W2180186136 hasConceptScore W2180186136C41008148 @default.
- W2180186136 hasConceptScore W2180186136C43521106 @default.
- W2180186136 hasIssue "1" @default.
- W2180186136 hasLocation W21801861361 @default.
- W2180186136 hasLocation W21801861362 @default.
- W2180186136 hasLocation W21801861363 @default.
- W2180186136 hasLocation W21801861364 @default.
- W2180186136 hasOpenAccess W2180186136 @default.
- W2180186136 hasPrimaryLocation W21801861361 @default.
- W2180186136 hasRelatedWork W1996541855 @default.
- W2180186136 hasRelatedWork W2101819884 @default.