Matches in SemOpenAlex for { <https://semopenalex.org/work/W2181371348> ?p ?o ?g. }
- W2181371348 endingPage "e1416" @default.
- W2181371348 startingPage "e1416" @default.
- W2181371348 abstract "Due to a boom in the dairy industry in Northeast China, the hay industry has been developing rapidly. Thus, it is very important to evaluate the hay quality with a rapid and accurate method. In this research, a novel technique that combines near infrared spectroscopy (NIRs) with three different statistical analyses (MLR, PCR and PLS) was used to predict the chemical quality of sheepgrass ( Leymus chinensis ) in Heilongjiang Province, China including the concentrations of crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF). Firstly, the linear partial least squares regression (PLS) was performed on the spectra and the predictions were compared to those with laboratory-based recorded spectra. Then, the MLR evaluation method for CP has a potential to be used for industry requirements, as it needs less sophisticated and cheaper instrumentation using only a few wavelengths. Results show that in terms of CP, ADF and NDF, (i) the prediction accuracy in terms of CP, ADF and NDF using PLS was obviously improved compared to the PCR algorithm, and comparable or even better than results generated using the MLR algorithm; (ii) the predictions were worse compared to laboratory-based spectra with the MLR algorithmin, and poor predictions were obtained (R2, 0.62, RPD, 0.9) using MLR in terms of NDF; (iii) a satisfactory accuracy with R2 and RPD by PLS method of 0.91, 3.2 for CP, 0.89, 3.1 for ADF and 0.88, 3.0 for NDF, respectively, was obtained. Our results highlight the use of the combined NIRs-PLS method could be applied as a valuable technique to rapidly and accurately evaluate the quality of sheepgrass hay." @default.
- W2181371348 created "2016-06-24" @default.
- W2181371348 creator A5031828292 @default.
- W2181371348 creator A5037880451 @default.
- W2181371348 creator A5038539498 @default.
- W2181371348 creator A5078912113 @default.
- W2181371348 creator A5079926306 @default.
- W2181371348 creator A5081117163 @default.
- W2181371348 date "2015-12-03" @default.
- W2181371348 modified "2023-09-25" @default.
- W2181371348 title "Evaluation of<i>Leymus chinensis</i>quality using near-infrared reflectance spectroscopy with three different statistical analyses" @default.
- W2181371348 cites W1971166981 @default.
- W2181371348 cites W1981391152 @default.
- W2181371348 cites W1983740953 @default.
- W2181371348 cites W1997087247 @default.
- W2181371348 cites W1998053851 @default.
- W2181371348 cites W2001470692 @default.
- W2181371348 cites W2007851095 @default.
- W2181371348 cites W2025450090 @default.
- W2181371348 cites W2038671466 @default.
- W2181371348 cites W2047889825 @default.
- W2181371348 cites W2050172590 @default.
- W2181371348 cites W2064461121 @default.
- W2181371348 cites W2083783059 @default.
- W2181371348 cites W2094873161 @default.
- W2181371348 cites W2100812469 @default.
- W2181371348 cites W2124268370 @default.
- W2181371348 cites W2152515675 @default.
- W2181371348 cites W2349033645 @default.
- W2181371348 cites W2350463202 @default.
- W2181371348 cites W2357813053 @default.
- W2181371348 cites W2362079901 @default.
- W2181371348 cites W2368742213 @default.
- W2181371348 cites W2377444310 @default.
- W2181371348 cites W2384882943 @default.
- W2181371348 cites W2897662060 @default.
- W2181371348 doi "https://doi.org/10.7717/peerj.1416" @default.
- W2181371348 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4671155" @default.
- W2181371348 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26644973" @default.
- W2181371348 hasPublicationYear "2015" @default.
- W2181371348 type Work @default.
- W2181371348 sameAs 2181371348 @default.
- W2181371348 citedByCount "14" @default.
- W2181371348 countsByYear W21813713482017 @default.
- W2181371348 countsByYear W21813713482018 @default.
- W2181371348 countsByYear W21813713482019 @default.
- W2181371348 countsByYear W21813713482020 @default.
- W2181371348 countsByYear W21813713482021 @default.
- W2181371348 countsByYear W21813713482022 @default.
- W2181371348 countsByYear W21813713482023 @default.
- W2181371348 crossrefType "journal-article" @default.
- W2181371348 hasAuthorship W2181371348A5031828292 @default.
- W2181371348 hasAuthorship W2181371348A5037880451 @default.
- W2181371348 hasAuthorship W2181371348A5038539498 @default.
- W2181371348 hasAuthorship W2181371348A5078912113 @default.
- W2181371348 hasAuthorship W2181371348A5079926306 @default.
- W2181371348 hasAuthorship W2181371348A5081117163 @default.
- W2181371348 hasBestOaLocation W21813713481 @default.
- W2181371348 hasConcept C105795698 @default.
- W2181371348 hasConcept C106191032 @default.
- W2181371348 hasConcept C113196181 @default.
- W2181371348 hasConcept C140793950 @default.
- W2181371348 hasConcept C169760540 @default.
- W2181371348 hasConcept C178790620 @default.
- W2181371348 hasConcept C185592680 @default.
- W2181371348 hasConcept C22354355 @default.
- W2181371348 hasConcept C2775835988 @default.
- W2181371348 hasConcept C2777036795 @default.
- W2181371348 hasConcept C2779039770 @default.
- W2181371348 hasConcept C2992117060 @default.
- W2181371348 hasConcept C33923547 @default.
- W2181371348 hasConcept C43571822 @default.
- W2181371348 hasConcept C43617362 @default.
- W2181371348 hasConcept C48921125 @default.
- W2181371348 hasConcept C519885992 @default.
- W2181371348 hasConcept C6557445 @default.
- W2181371348 hasConcept C86803240 @default.
- W2181371348 hasConceptScore W2181371348C105795698 @default.
- W2181371348 hasConceptScore W2181371348C106191032 @default.
- W2181371348 hasConceptScore W2181371348C113196181 @default.
- W2181371348 hasConceptScore W2181371348C140793950 @default.
- W2181371348 hasConceptScore W2181371348C169760540 @default.
- W2181371348 hasConceptScore W2181371348C178790620 @default.
- W2181371348 hasConceptScore W2181371348C185592680 @default.
- W2181371348 hasConceptScore W2181371348C22354355 @default.
- W2181371348 hasConceptScore W2181371348C2775835988 @default.
- W2181371348 hasConceptScore W2181371348C2777036795 @default.
- W2181371348 hasConceptScore W2181371348C2779039770 @default.
- W2181371348 hasConceptScore W2181371348C2992117060 @default.
- W2181371348 hasConceptScore W2181371348C33923547 @default.
- W2181371348 hasConceptScore W2181371348C43571822 @default.
- W2181371348 hasConceptScore W2181371348C43617362 @default.
- W2181371348 hasConceptScore W2181371348C48921125 @default.
- W2181371348 hasConceptScore W2181371348C519885992 @default.
- W2181371348 hasConceptScore W2181371348C6557445 @default.
- W2181371348 hasConceptScore W2181371348C86803240 @default.
- W2181371348 hasLocation W21813713481 @default.
- W2181371348 hasLocation W21813713482 @default.