Matches in SemOpenAlex for { <https://semopenalex.org/work/W21817812> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W21817812 endingPage "72" @default.
- W21817812 startingPage "49" @default.
- W21817812 abstract "This paper is an introduction to the algebraic theory of infinite words. Infinite words are widely used in computer science, in particular to model the behaviour of programs or circuits. From a mathematical point of view, they have a rich structure, at the cross-roads of logic, topology and algebra. This paper emphasizes the combinatorial and algebraic aspects of this theory but the interested reader is referred to the survey articles [34, 44] or to the report [30] for more information on the other aspects. In particular, the important topic of the complexity of the algorithms on infinite words is not treated in this paper. The paper is written with the perspective of generalizing the results on recognizable sets of finite words to infinite words. This does not exactly follow the historical development of the theory, but it gives a good idea of the type of problems that occur in this field. Some of these problems are still open, or have been solved quite recently so that the definitions and results presented below may not be as yet finalized. The first result to be generalized is the equivalence between finite automata, finite deterministic automata and rational expressions. If one adds infinite iteration (“omega” operation) to the standard rational operations, union, product and star, one gets a natural definition of the ω-rational sets of infinite words that extends the definition of rational sets of finite words. Buchi [5] was the first to propose a definition of finite automata acting on infinite words. This definition suffices to extend Kleene’s theorem to infinite words: the sets of infinite words recognized by finite Buchi automata are exactly the ω-rational sets. This result is now known as Buchi’s theorem. However, Buchi’s definition is not totally satisfying since deterministic Buchi automata are not equivalent to non deterministic ones. The con-" @default.
- W21817812 created "2016-06-24" @default.
- W21817812 creator A5023891526 @default.
- W21817812 creator A5053799952 @default.
- W21817812 creator A5085522471 @default.
- W21817812 date "1995-01-01" @default.
- W21817812 modified "2023-10-02" @default.
- W21817812 title "Semigroups and Automata on Infinite Words" @default.
- W21817812 cites W117768600 @default.
- W21817812 cites W124311540 @default.
- W21817812 cites W1561138645 @default.
- W21817812 cites W1597502208 @default.
- W21817812 cites W1859852581 @default.
- W21817812 cites W1968086929 @default.
- W21817812 cites W1970999740 @default.
- W21817812 cites W1987027130 @default.
- W21817812 cites W1997358966 @default.
- W21817812 cites W2006654895 @default.
- W21817812 cites W2013085432 @default.
- W21817812 cites W2019932899 @default.
- W21817812 cites W2020558489 @default.
- W21817812 cites W2022136117 @default.
- W21817812 cites W2038544898 @default.
- W21817812 cites W2044010368 @default.
- W21817812 cites W2094912129 @default.
- W21817812 cites W2116250539 @default.
- W21817812 cites W4205178514 @default.
- W21817812 cites W4231685078 @default.
- W21817812 doi "https://doi.org/10.1007/978-94-011-0149-3_3" @default.
- W21817812 hasPublicationYear "1995" @default.
- W21817812 type Work @default.
- W21817812 sameAs 21817812 @default.
- W21817812 citedByCount "37" @default.
- W21817812 countsByYear W218178122012 @default.
- W21817812 countsByYear W218178122013 @default.
- W21817812 countsByYear W218178122014 @default.
- W21817812 countsByYear W218178122015 @default.
- W21817812 countsByYear W218178122017 @default.
- W21817812 countsByYear W218178122020 @default.
- W21817812 crossrefType "book-chapter" @default.
- W21817812 hasAuthorship W21817812A5023891526 @default.
- W21817812 hasAuthorship W21817812A5053799952 @default.
- W21817812 hasAuthorship W21817812A5085522471 @default.
- W21817812 hasBestOaLocation W218178122 @default.
- W21817812 hasConcept C112505250 @default.
- W21817812 hasConcept C41008148 @default.
- W21817812 hasConcept C80444323 @default.
- W21817812 hasConceptScore W21817812C112505250 @default.
- W21817812 hasConceptScore W21817812C41008148 @default.
- W21817812 hasConceptScore W21817812C80444323 @default.
- W21817812 hasLocation W218178121 @default.
- W21817812 hasLocation W218178122 @default.
- W21817812 hasOpenAccess W21817812 @default.
- W21817812 hasPrimaryLocation W218178121 @default.
- W21817812 hasRelatedWork W1490551994 @default.
- W21817812 hasRelatedWork W153904579 @default.
- W21817812 hasRelatedWork W2047802234 @default.
- W21817812 hasRelatedWork W2133673823 @default.
- W21817812 hasRelatedWork W2325436751 @default.
- W21817812 hasRelatedWork W2330733397 @default.
- W21817812 hasRelatedWork W2368796975 @default.
- W21817812 hasRelatedWork W2740942814 @default.
- W21817812 hasRelatedWork W2602338684 @default.
- W21817812 hasRelatedWork W2751931981 @default.
- W21817812 isParatext "false" @default.
- W21817812 isRetracted "false" @default.
- W21817812 magId "21817812" @default.
- W21817812 workType "book-chapter" @default.