Matches in SemOpenAlex for { <https://semopenalex.org/work/W2181781258> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2181781258 abstract "At the present time privacy issues are main concern for many government and other private organizations to delve important information from large repositories of data. Privacy preserving clustering which is one of the techniques emerged to addresses the problem of extracting useful clustering patterns from distorted data without accessing the original data directly. In this paper a hybrid data transformation method is proposed for privacy preserving clustering in centralized database environment. The proposed hybrid method takes the advantage of two existing techniques such as Singular Value Decomposition (SVD) and shearing based data perturbation. Experimental results demonstrate that the proposed method efficiently protects the private data of individuals and retains the important information for clustering analysis. ATA collection has increased rapidly with the evolution of internet and information technology. In order to en- hance their business, organizations are using data mining for extracting new patterns and relationships. The process of sifting through huge databases, for extracting useful, hidden patterns is called as data mining. The techniques of data min- ing are widely used in business and scientific communities such as medical, healthcare, insurance, banking, marketing etc. Association rules, classification, clustering, regression are some of the data mining tasks. Cluster analysis partitions data into several categories or useful groups (clusters) based on the similarity in the data. It is an unsupervised learning method, which is used for the exploration of inter relationships among a collection of patterns, by organizing them into homogeneous clusters. Relative distance or relative density between the ob- jects is taken as the similarity measure for the clustering ob- jects. Clustering is performed based on the principle of max- imizing the intracluster similarity and minimizing the inter- cluster similarity. To resolve the problem of privacy, a new research area called privacy preserving data mining has been evolved. The process of privacy preserving data mining is to extract useful patterns without breaching the privacy of individuals. Differ- ent techniques have been proposed for protecting the privacy of individuals such as data modification, data partitioning, data restriction and data ownership (1). Data mining is providing numerous benefits, there is a negative impact with data mining is the risk of privacy invasion. This problem is addressed by a new branch of data mining which takes the privacy issues under consideration is known as privacy pre- serving data mining. The goals of privacy preserving data mining are A. Protection of privacy in data release B. Privacy is protected among multiple collaborating parties C. Protecting the sensitive knowledge patterns ex- tracted with data mining tools. Privacy preserving clustering methods can extract valid clustering patterns without breaching the privacy of individu- als. Different approaches have been developed to effectively shield the sensitive information contained in databases such as access control, perturbation techniques, anonymity, and se- cure multi-party computation. In this paper a hybrid data transformation method is proposed for privacy preserving clustering, which is a combination of Singular Value Decom- position (SVD) and shearing based data perturbation." @default.
- W2181781258 created "2016-06-24" @default.
- W2181781258 creator A5019670293 @default.
- W2181781258 creator A5023076061 @default.
- W2181781258 creator A5037125042 @default.
- W2181781258 creator A5082624503 @default.
- W2181781258 date "2014-01-01" @default.
- W2181781258 modified "2023-09-27" @default.
- W2181781258 title "Hybrid SVD BASED DATA TRANSFORMATION METHODS FOR PRIVACY PRESERVING" @default.
- W2181781258 cites W160533925 @default.
- W2181781258 cites W1987213187 @default.
- W2181781258 cites W2076041627 @default.
- W2181781258 cites W2111272198 @default.
- W2181781258 cites W2170363738 @default.
- W2181781258 cites W2183703479 @default.
- W2181781258 cites W2347234982 @default.
- W2181781258 cites W2395575934 @default.
- W2181781258 cites W2119746392 @default.
- W2181781258 hasPublicationYear "2014" @default.
- W2181781258 type Work @default.
- W2181781258 sameAs 2181781258 @default.
- W2181781258 citedByCount "0" @default.
- W2181781258 crossrefType "journal-article" @default.
- W2181781258 hasAuthorship W2181781258A5019670293 @default.
- W2181781258 hasAuthorship W2181781258A5023076061 @default.
- W2181781258 hasAuthorship W2181781258A5037125042 @default.
- W2181781258 hasAuthorship W2181781258A5082624503 @default.
- W2181781258 hasConcept C120567893 @default.
- W2181781258 hasConcept C124101348 @default.
- W2181781258 hasConcept C135572916 @default.
- W2181781258 hasConcept C150670458 @default.
- W2181781258 hasConcept C154945302 @default.
- W2181781258 hasConcept C2780762811 @default.
- W2181781258 hasConcept C41008148 @default.
- W2181781258 hasConcept C73555534 @default.
- W2181781258 hasConceptScore W2181781258C120567893 @default.
- W2181781258 hasConceptScore W2181781258C124101348 @default.
- W2181781258 hasConceptScore W2181781258C135572916 @default.
- W2181781258 hasConceptScore W2181781258C150670458 @default.
- W2181781258 hasConceptScore W2181781258C154945302 @default.
- W2181781258 hasConceptScore W2181781258C2780762811 @default.
- W2181781258 hasConceptScore W2181781258C41008148 @default.
- W2181781258 hasConceptScore W2181781258C73555534 @default.
- W2181781258 hasLocation W21817812581 @default.
- W2181781258 hasOpenAccess W2181781258 @default.
- W2181781258 hasPrimaryLocation W21817812581 @default.
- W2181781258 hasRelatedWork W10211916 @default.
- W2181781258 hasRelatedWork W1413286666 @default.
- W2181781258 hasRelatedWork W1586992260 @default.
- W2181781258 hasRelatedWork W1998927130 @default.
- W2181781258 hasRelatedWork W2013141188 @default.
- W2181781258 hasRelatedWork W2018547938 @default.
- W2181781258 hasRelatedWork W2036175803 @default.
- W2181781258 hasRelatedWork W2136681745 @default.
- W2181781258 hasRelatedWork W2183089098 @default.
- W2181781258 hasRelatedWork W2186808110 @default.
- W2181781258 hasRelatedWork W2271092850 @default.
- W2181781258 hasRelatedWork W2282758527 @default.
- W2181781258 hasRelatedWork W2319318900 @default.
- W2181781258 hasRelatedWork W2993584434 @default.
- W2181781258 hasRelatedWork W45692456 @default.
- W2181781258 hasRelatedWork W2119746392 @default.
- W2181781258 hasRelatedWork W2179578106 @default.
- W2181781258 hasRelatedWork W2550922181 @default.
- W2181781258 hasRelatedWork W2978064855 @default.
- W2181781258 hasRelatedWork W2985892554 @default.
- W2181781258 isParatext "false" @default.
- W2181781258 isRetracted "false" @default.
- W2181781258 magId "2181781258" @default.
- W2181781258 workType "article" @default.