Matches in SemOpenAlex for { <https://semopenalex.org/work/W2181984765> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2181984765 abstract "Magnetotelluric directional analysis and impedance tensor decomposition are basic tools that are being standardly employed to validate a local/regional composite electrical model of the underlying structure as well as to extract quantitative information about both the regional c onductor, often with a specific type of symmetry, and the local distorters. As the effect of local galvanic distor tions can result in considerably blurring the image of the deeper regional conductor, reliable quantitative estimat es of both the decomposition parameters and their uncertainties are needed. Bayesian stochastic methods are parti cularly suitable for this purpose, as they approach the problem of the parameter estimation and their uncertainty characterization in a fully probabilistic fashion, through the use of posterior model probabilities, rather than by der iving single point estimates of the model parameters and assessing their uncertainties via a linearized covaria nce projection from the data space into the model domain. We use the standard Groom-Bailey 3-D local/2-D regional composite model in our bayesian approach to the magnetotelluric decomposition. We assume that the experimental impedance estimates are contamined with the Gaussian noise and define the likelihood of a particular comp osite model with respect to the observed data in terms of the least-squares misfit between the model and exper imental impedances. We use non-informative, flat priors over physically reasonable intervals for the standa rd Groom-Bailey decomposition parameters. Further, we apply two numerical variants of a Monte Carlo technique, specifically the Markov chain Monte Carlo procedure based on the Gibbs sampler and a single-component adaptive Metropolis algorithm, to simulate samples from the posterior distribution of the composite models conditi oned on the experimental data. From the posterior samples, we characterize the estimates and uncertainties of the individual decomposition parameters by using the respective marginal posterior probabilities. By analy zing results of our stochastic decomposition experiments carried out with several recently published impedance data sets, both synthetic and practical, we can conclude that the stochastic scheme performs reliably for a variety of models, including the multisite and multifrequency case with up to several hundreds of parameters. Though the Monte Carlo samplers are computationally very intensive, the recent adaptive Metropolis algorithm seems to efficient ly increase the speed of the simulations for large-scale problems." @default.
- W2181984765 created "2016-06-24" @default.
- W2181984765 creator A5007081425 @default.
- W2181984765 creator A5018852343 @default.
- W2181984765 date "2005-01-01" @default.
- W2181984765 modified "2023-09-27" @default.
- W2181984765 title "Bayesian Monte Carlo for MT Tensor Decomposition" @default.
- W2181984765 cites W1484018184 @default.
- W2181984765 cites W1653357460 @default.
- W2181984765 cites W1966040011 @default.
- W2181984765 cites W2020999234 @default.
- W2181984765 cites W2021336298 @default.
- W2181984765 cites W2037107876 @default.
- W2181984765 cites W2045075007 @default.
- W2181984765 cites W2045656233 @default.
- W2181984765 cites W2099249230 @default.
- W2181984765 cites W2101305907 @default.
- W2181984765 cites W2102184291 @default.
- W2181984765 cites W2122170486 @default.
- W2181984765 cites W2126883357 @default.
- W2181984765 cites W2134181566 @default.
- W2181984765 cites W2148814689 @default.
- W2181984765 cites W2149280799 @default.
- W2181984765 cites W2163063149 @default.
- W2181984765 cites W2164602066 @default.
- W2181984765 cites W2763294500 @default.
- W2181984765 hasPublicationYear "2005" @default.
- W2181984765 type Work @default.
- W2181984765 sameAs 2181984765 @default.
- W2181984765 citedByCount "0" @default.
- W2181984765 crossrefType "journal-article" @default.
- W2181984765 hasAuthorship W2181984765A5007081425 @default.
- W2181984765 hasAuthorship W2181984765A5018852343 @default.
- W2181984765 hasConcept C105795698 @default.
- W2181984765 hasConcept C107673813 @default.
- W2181984765 hasConcept C111350023 @default.
- W2181984765 hasConcept C11413529 @default.
- W2181984765 hasConcept C121332964 @default.
- W2181984765 hasConcept C121864883 @default.
- W2181984765 hasConcept C126255220 @default.
- W2181984765 hasConcept C13153151 @default.
- W2181984765 hasConcept C19499675 @default.
- W2181984765 hasConcept C28826006 @default.
- W2181984765 hasConcept C33923547 @default.
- W2181984765 hasConcept C41008148 @default.
- W2181984765 hasConcept C57493831 @default.
- W2181984765 hasConceptScore W2181984765C105795698 @default.
- W2181984765 hasConceptScore W2181984765C107673813 @default.
- W2181984765 hasConceptScore W2181984765C111350023 @default.
- W2181984765 hasConceptScore W2181984765C11413529 @default.
- W2181984765 hasConceptScore W2181984765C121332964 @default.
- W2181984765 hasConceptScore W2181984765C121864883 @default.
- W2181984765 hasConceptScore W2181984765C126255220 @default.
- W2181984765 hasConceptScore W2181984765C13153151 @default.
- W2181984765 hasConceptScore W2181984765C19499675 @default.
- W2181984765 hasConceptScore W2181984765C28826006 @default.
- W2181984765 hasConceptScore W2181984765C33923547 @default.
- W2181984765 hasConceptScore W2181984765C41008148 @default.
- W2181984765 hasConceptScore W2181984765C57493831 @default.
- W2181984765 hasLocation W21819847651 @default.
- W2181984765 hasOpenAccess W2181984765 @default.
- W2181984765 hasPrimaryLocation W21819847651 @default.
- W2181984765 hasRelatedWork W1678034755 @default.
- W2181984765 hasRelatedWork W1985996142 @default.
- W2181984765 hasRelatedWork W1987857534 @default.
- W2181984765 hasRelatedWork W1988066589 @default.
- W2181984765 hasRelatedWork W1996433205 @default.
- W2181984765 hasRelatedWork W2041717489 @default.
- W2181984765 hasRelatedWork W2048198325 @default.
- W2181984765 hasRelatedWork W2056969652 @default.
- W2181984765 hasRelatedWork W2087528187 @default.
- W2181984765 hasRelatedWork W2142205121 @default.
- W2181984765 hasRelatedWork W2202617390 @default.
- W2181984765 hasRelatedWork W2547955500 @default.
- W2181984765 hasRelatedWork W2740472807 @default.
- W2181984765 hasRelatedWork W2769635539 @default.
- W2181984765 hasRelatedWork W2902610883 @default.
- W2181984765 hasRelatedWork W2911356559 @default.
- W2181984765 hasRelatedWork W2912374724 @default.
- W2181984765 hasRelatedWork W3009215271 @default.
- W2181984765 hasRelatedWork W3148069879 @default.
- W2181984765 hasRelatedWork W45004989 @default.
- W2181984765 isParatext "false" @default.
- W2181984765 isRetracted "false" @default.
- W2181984765 magId "2181984765" @default.
- W2181984765 workType "article" @default.