Matches in SemOpenAlex for { <https://semopenalex.org/work/W2182065306> ?p ?o ?g. }
- W2182065306 endingPage "273" @default.
- W2182065306 startingPage "263" @default.
- W2182065306 abstract "As new target-directed anticancer agents emerge, preclinical efficacy studies need to integrate target-driven model systems. This approach to drug development requires rapid and reliable characterization of the new targets in established tumor models, such as xenografts and cell lines. Here, we have applied tissue microarray technology to patient- derived, re-growable human tumor xenografts. We have profiled the expression of five proteins involved in cell migration and/or angiogenesis: vascular endothelial growth factor (VEGF), matrix metalloproteinase 1 (MMP1), protease activated receptor (PAR1), cathepsin B, and β1 integrin in a panel of over 150 tumors and compared their expression levels to available patient outcome data. For each protein, several target overexpressing xenografts were identified. They represent a subset of tumor models prone to respond to specific inhibitors and are available for future preclinical efficacy trials. In a proof o f concept experiment, we have employed tissue microarrays to select in vivo models for therapy and for the analysis of molecular changes occurring after treatment with the anti-VEGF antibody HuMV833 and gemcitabine. Whereas the less angiogenic pancreatic cancer PAXF736 model proved to be resistant, the highly vascularized PAXF546 xenograft responded to therapy. Parallel analysis of arrayed biopsies from the different treatment groups revealed a down-regulation of Ki-67 and VEGF, an altered tissue morphology, and a decreased vessel density. Our results demonstrate the multiple advantages of xenograft tissue microarrays for preclinical drug development. Recent advances in molecular medicine have deepened our understanding of the pathological basis of oncogenesis. This development has had far reaching consequences for drug development in oncology. Whilst traditional procedures for evaluation of drug efficacy are based on empirical screens measuring cytotoxicity, more recent algorithms emphasize additional aspects of malignancy such as angiogenesis, metastasis or signal transduction (1, 2). Nevertheless, the characterization of new target proteins and their validation for the clinic remains a labor intensive and time-consuming exercise. In order to ease this bottleneck, further research is urgently needed into the development of suitable high throughput methods. Since their introduction in the late nineties, tissue microarrays have become a well established method for the parallel evaluation of gene and protein expression in hundreds of tissue biopsies (3). Fluorescent in situ hybridization (FISH) and immunohistochemistry allow a classification of tissues according to gene expression, protein levels and histology. Moreover, the relationship between gene expression, pathological variables and clinical outcome data can be studied, which permits the assessment of the target's relevance for therapy, diagnosis and prognosis of cancer. Thus, tissue microarrays have proven to be a valuable tool for the study of the human oncoproteome (3-4). We have applied tissue microarray technology to our collection of human tumor xenografts. Over the past 20 years, our institute has established over 400 tumor models" @default.
- W2182065306 created "2016-06-24" @default.
- W2182065306 creator A5005230152 @default.
- W2182065306 creator A5006790110 @default.
- W2182065306 creator A5062304427 @default.
- W2182065306 creator A5076633504 @default.
- W2182065306 date "2008-09-01" @default.
- W2182065306 modified "2023-10-14" @default.
- W2182065306 title "Tissue Microarrays of Human Tumor Xenografts: Characterization of Proteins Involved in Migration and Angiogenesis for Applications in the Development of Targeted Anticancer Agents" @default.
- W2182065306 cites W154972788 @default.
- W2182065306 cites W1554166012 @default.
- W2182065306 cites W1588158705 @default.
- W2182065306 cites W1605283518 @default.
- W2182065306 cites W1761234319 @default.
- W2182065306 cites W1972609806 @default.
- W2182065306 cites W1981486175 @default.
- W2182065306 cites W1981648195 @default.
- W2182065306 cites W1987018141 @default.
- W2182065306 cites W1988692190 @default.
- W2182065306 cites W1991941405 @default.
- W2182065306 cites W2020904443 @default.
- W2182065306 cites W2022776423 @default.
- W2182065306 cites W2028896946 @default.
- W2182065306 cites W2030570157 @default.
- W2182065306 cites W2039757013 @default.
- W2182065306 cites W2042082129 @default.
- W2182065306 cites W2047145252 @default.
- W2182065306 cites W2049400485 @default.
- W2182065306 cites W2053590672 @default.
- W2182065306 cites W2053800409 @default.
- W2182065306 cites W2056264529 @default.
- W2182065306 cites W2061340347 @default.
- W2182065306 cites W2065493263 @default.
- W2182065306 cites W2067740369 @default.
- W2182065306 cites W2069354314 @default.
- W2182065306 cites W2086619383 @default.
- W2182065306 cites W2087810003 @default.
- W2182065306 cites W2090013347 @default.
- W2182065306 cites W2090581624 @default.
- W2182065306 cites W2101857219 @default.
- W2182065306 cites W2120448598 @default.
- W2182065306 cites W2121548842 @default.
- W2182065306 cites W2141764540 @default.
- W2182065306 cites W2142121598 @default.
- W2182065306 cites W2145009515 @default.
- W2182065306 cites W2148323023 @default.
- W2182065306 cites W2152905965 @default.
- W2182065306 cites W2160042168 @default.
- W2182065306 cites W2165155252 @default.
- W2182065306 cites W2169332265 @default.
- W2182065306 cites W2221280830 @default.
- W2182065306 cites W2340314366 @default.
- W2182065306 cites W2398965845 @default.
- W2182065306 cites W2480922789 @default.
- W2182065306 cites W54649336 @default.
- W2182065306 cites W58458749 @default.
- W2182065306 cites W2130494035 @default.
- W2182065306 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3662302" @default.
- W2182065306 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19129557" @default.
- W2182065306 hasPublicationYear "2008" @default.
- W2182065306 type Work @default.
- W2182065306 sameAs 2182065306 @default.
- W2182065306 citedByCount "8" @default.
- W2182065306 countsByYear W21820653062014 @default.
- W2182065306 countsByYear W21820653062016 @default.
- W2182065306 countsByYear W21820653062018 @default.
- W2182065306 countsByYear W21820653062020 @default.
- W2182065306 countsByYear W21820653062021 @default.
- W2182065306 countsByYear W21820653062023 @default.
- W2182065306 crossrefType "journal-article" @default.
- W2182065306 hasAuthorship W2182065306A5005230152 @default.
- W2182065306 hasAuthorship W2182065306A5006790110 @default.
- W2182065306 hasAuthorship W2182065306A5062304427 @default.
- W2182065306 hasAuthorship W2182065306A5076633504 @default.
- W2182065306 hasConcept C104317684 @default.
- W2182065306 hasConcept C121608353 @default.
- W2182065306 hasConcept C126322002 @default.
- W2182065306 hasConcept C129527566 @default.
- W2182065306 hasConcept C150194340 @default.
- W2182065306 hasConcept C150903083 @default.
- W2182065306 hasConcept C167734588 @default.
- W2182065306 hasConcept C193270364 @default.
- W2182065306 hasConcept C207001950 @default.
- W2182065306 hasConcept C2777025900 @default.
- W2182065306 hasConcept C2780035454 @default.
- W2182065306 hasConcept C2780394083 @default.
- W2182065306 hasConcept C502942594 @default.
- W2182065306 hasConcept C55493867 @default.
- W2182065306 hasConcept C64903051 @default.
- W2182065306 hasConcept C71924100 @default.
- W2182065306 hasConcept C86803240 @default.
- W2182065306 hasConcept C98274493 @default.
- W2182065306 hasConceptScore W2182065306C104317684 @default.
- W2182065306 hasConceptScore W2182065306C121608353 @default.
- W2182065306 hasConceptScore W2182065306C126322002 @default.
- W2182065306 hasConceptScore W2182065306C129527566 @default.
- W2182065306 hasConceptScore W2182065306C150194340 @default.
- W2182065306 hasConceptScore W2182065306C150903083 @default.