Matches in SemOpenAlex for { <https://semopenalex.org/work/W2182138432> ?p ?o ?g. }
- W2182138432 endingPage "3484" @default.
- W2182138432 startingPage "3466" @default.
- W2182138432 abstract "This paper considers the cell formation (CF) problem in which parts have alternative process routings and the number of machine cells is not known a priori. Very few studies address these two practical issues at the same time. This paper proposes an automatic clustering approach based on a hybrid particle swarm optimisation (PSO) algorithm that can automatically evolve the number and cluster centres of machine cells for a generalised CF problem. In the proposed approach, a solution representation, comprising an integer number and a set of real numbers, is adopted to encode the number of cells and machine cluster centres, respectively. Besides, a discrete PSO algorithm is utilised to search for the number of machine cells, and a continuous PSO algorithm is employed to perform machine clustering. Effectiveness of the proposed approach has been demonstrated for test problems selected from the literature and those generated in this study. The experimental results indicate that the proposed approach is capable of solving the generalised machine CF problem without predetermination of the number of cells." @default.
- W2182138432 created "2016-06-24" @default.
- W2182138432 creator A5034424906 @default.
- W2182138432 creator A5076737942 @default.
- W2182138432 date "2013-12-10" @default.
- W2182138432 modified "2023-09-27" @default.
- W2182138432 title "Automatic clustering for generalised cell formation using a hybrid particle swarm optimisation" @default.
- W2182138432 cites W1963756492 @default.
- W2182138432 cites W1966574952 @default.
- W2182138432 cites W1970085711 @default.
- W2182138432 cites W1970449922 @default.
- W2182138432 cites W1974747096 @default.
- W2182138432 cites W1978650996 @default.
- W2182138432 cites W1990110642 @default.
- W2182138432 cites W1991144123 @default.
- W2182138432 cites W1991273214 @default.
- W2182138432 cites W1997293102 @default.
- W2182138432 cites W1998955956 @default.
- W2182138432 cites W2001022047 @default.
- W2182138432 cites W2001599725 @default.
- W2182138432 cites W2001746836 @default.
- W2182138432 cites W2011911735 @default.
- W2182138432 cites W2014579241 @default.
- W2182138432 cites W2018066517 @default.
- W2182138432 cites W2018546788 @default.
- W2182138432 cites W2020374570 @default.
- W2182138432 cites W2024912695 @default.
- W2182138432 cites W2025112605 @default.
- W2182138432 cites W2026320211 @default.
- W2182138432 cites W2028114871 @default.
- W2182138432 cites W2029174337 @default.
- W2182138432 cites W2029775585 @default.
- W2182138432 cites W2032152175 @default.
- W2182138432 cites W2034219931 @default.
- W2182138432 cites W2037894794 @default.
- W2182138432 cites W2044056864 @default.
- W2182138432 cites W2044454809 @default.
- W2182138432 cites W2048882317 @default.
- W2182138432 cites W2050054342 @default.
- W2182138432 cites W2050718271 @default.
- W2182138432 cites W2050895625 @default.
- W2182138432 cites W2051764341 @default.
- W2182138432 cites W2052264304 @default.
- W2182138432 cites W2057163815 @default.
- W2182138432 cites W2057187168 @default.
- W2182138432 cites W2064854622 @default.
- W2182138432 cites W2065431322 @default.
- W2182138432 cites W2071017874 @default.
- W2182138432 cites W2073614217 @default.
- W2182138432 cites W2078957054 @default.
- W2182138432 cites W2096724801 @default.
- W2182138432 cites W2108775056 @default.
- W2182138432 cites W2110538519 @default.
- W2182138432 cites W2128088611 @default.
- W2182138432 cites W2139720483 @default.
- W2182138432 cites W2152195021 @default.
- W2182138432 cites W2157024426 @default.
- W2182138432 cites W2159345671 @default.
- W2182138432 cites W2514218167 @default.
- W2182138432 doi "https://doi.org/10.1080/00207543.2013.867085" @default.
- W2182138432 hasPublicationYear "2013" @default.
- W2182138432 type Work @default.
- W2182138432 sameAs 2182138432 @default.
- W2182138432 citedByCount "20" @default.
- W2182138432 countsByYear W21821384322014 @default.
- W2182138432 countsByYear W21821384322016 @default.
- W2182138432 countsByYear W21821384322017 @default.
- W2182138432 countsByYear W21821384322018 @default.
- W2182138432 countsByYear W21821384322019 @default.
- W2182138432 countsByYear W21821384322020 @default.
- W2182138432 countsByYear W21821384322021 @default.
- W2182138432 countsByYear W21821384322022 @default.
- W2182138432 countsByYear W21821384322023 @default.
- W2182138432 crossrefType "journal-article" @default.
- W2182138432 hasAuthorship W2182138432A5034424906 @default.
- W2182138432 hasAuthorship W2182138432A5076737942 @default.
- W2182138432 hasConcept C111472728 @default.
- W2182138432 hasConcept C111919701 @default.
- W2182138432 hasConcept C11413529 @default.
- W2182138432 hasConcept C126255220 @default.
- W2182138432 hasConcept C138885662 @default.
- W2182138432 hasConcept C154945302 @default.
- W2182138432 hasConcept C164866538 @default.
- W2182138432 hasConcept C177264268 @default.
- W2182138432 hasConcept C17744445 @default.
- W2182138432 hasConcept C199360897 @default.
- W2182138432 hasConcept C199539241 @default.
- W2182138432 hasConcept C2776359362 @default.
- W2182138432 hasConcept C2778106978 @default.
- W2182138432 hasConcept C33923547 @default.
- W2182138432 hasConcept C41008148 @default.
- W2182138432 hasConcept C73555534 @default.
- W2182138432 hasConcept C75553542 @default.
- W2182138432 hasConcept C85617194 @default.
- W2182138432 hasConcept C94625758 @default.
- W2182138432 hasConcept C98045186 @default.
- W2182138432 hasConceptScore W2182138432C111472728 @default.
- W2182138432 hasConceptScore W2182138432C111919701 @default.