Matches in SemOpenAlex for { <https://semopenalex.org/work/W2182175052> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2182175052 abstract "Inferential processes, having to do with the closeness of models to data, lend themselves to geometric ideas. There are several geometries that are relevant to probability models, and one must avoid the temptation to attribute features of one geometry to another, but to keep in mind the images appropriate to the task at hand. A probability measure can be represented as an expectation, i.e., a linear functional on random variables. The set of all probability measures thus inherits a linear structure, and can be viewed as a convex subset of the linear space (a simplex in the finite-dimensional case). Walley’s lower prevision [4] can be represented as the infimum of a convex subset of this larger set. To define a geometry, a linear structure also needs a distance. The appealing Euclidean norm does not adequately describe the distance concepts that are appropriate to inferential problems. Kullback-Leibler divergence [2], while lacking the properties of a norm (or even a metric), is an inferentially meaningful measure of distance between probability measures since it is the expectation of a log-likelihood ratio. It is appealing to quantify the imprecision of a lower prevision by the information diamger—i.e., the supremum of Kullback-Leibler divergences—of the set of probability measures. This diameter, however, would be infinite if the measures in the set have different null events. Walley’s imprecise Dirichlet model [5] and the imprecise exponential family models of Quaeghebeur and de Cooman [3] are based on a convex set of hyperparameters for prior distributions of the model parameters, which are then modified by Bayesian updating. Upper and lower previsions of future observations can then be described geometrically in terms of tangent planes to the hyperparameter set. This interpretation is complicated for other predictands, or for models outside the class discussed by Diaconis and Ylvisaker [1]. The various issues are illustrated graphically by reference to 2× 2 contingency tables." @default.
- W2182175052 created "2016-06-24" @default.
- W2182175052 creator A5072957442 @default.
- W2182175052 date "2013-01-01" @default.
- W2182175052 modified "2023-09-24" @default.
- W2182175052 title "Geometries of Inference" @default.
- W2182175052 cites W1494902407 @default.
- W2182175052 cites W1968293352 @default.
- W2182175052 cites W2102691048 @default.
- W2182175052 cites W2123838014 @default.
- W2182175052 cites W2143143555 @default.
- W2182175052 hasPublicationYear "2013" @default.
- W2182175052 type Work @default.
- W2182175052 sameAs 2182175052 @default.
- W2182175052 citedByCount "0" @default.
- W2182175052 crossrefType "journal-article" @default.
- W2182175052 hasAuthorship W2182175052A5072957442 @default.
- W2182175052 hasConcept C105795698 @default.
- W2182175052 hasConcept C112680207 @default.
- W2182175052 hasConcept C118615104 @default.
- W2182175052 hasConcept C153024298 @default.
- W2182175052 hasConcept C157972887 @default.
- W2182175052 hasConcept C171752962 @default.
- W2182175052 hasConcept C206194317 @default.
- W2182175052 hasConcept C21031990 @default.
- W2182175052 hasConcept C2524010 @default.
- W2182175052 hasConcept C2780009758 @default.
- W2182175052 hasConcept C28826006 @default.
- W2182175052 hasConcept C33923547 @default.
- W2182175052 hasConcept C41008148 @default.
- W2182175052 hasConcept C49870271 @default.
- W2182175052 hasConcept C55974624 @default.
- W2182175052 hasConcept C77088390 @default.
- W2182175052 hasConceptScore W2182175052C105795698 @default.
- W2182175052 hasConceptScore W2182175052C112680207 @default.
- W2182175052 hasConceptScore W2182175052C118615104 @default.
- W2182175052 hasConceptScore W2182175052C153024298 @default.
- W2182175052 hasConceptScore W2182175052C157972887 @default.
- W2182175052 hasConceptScore W2182175052C171752962 @default.
- W2182175052 hasConceptScore W2182175052C206194317 @default.
- W2182175052 hasConceptScore W2182175052C21031990 @default.
- W2182175052 hasConceptScore W2182175052C2524010 @default.
- W2182175052 hasConceptScore W2182175052C2780009758 @default.
- W2182175052 hasConceptScore W2182175052C28826006 @default.
- W2182175052 hasConceptScore W2182175052C33923547 @default.
- W2182175052 hasConceptScore W2182175052C41008148 @default.
- W2182175052 hasConceptScore W2182175052C49870271 @default.
- W2182175052 hasConceptScore W2182175052C55974624 @default.
- W2182175052 hasConceptScore W2182175052C77088390 @default.
- W2182175052 hasLocation W21821750521 @default.
- W2182175052 hasOpenAccess W2182175052 @default.
- W2182175052 hasPrimaryLocation W21821750521 @default.
- W2182175052 hasRelatedWork W1528788397 @default.
- W2182175052 hasRelatedWork W162882313 @default.
- W2182175052 hasRelatedWork W191839298 @default.
- W2182175052 hasRelatedWork W195492442 @default.
- W2182175052 hasRelatedWork W19698120 @default.
- W2182175052 hasRelatedWork W2033279474 @default.
- W2182175052 hasRelatedWork W2054702592 @default.
- W2182175052 hasRelatedWork W2094947796 @default.
- W2182175052 hasRelatedWork W2169522796 @default.
- W2182175052 hasRelatedWork W2169695686 @default.
- W2182175052 hasRelatedWork W2186573770 @default.
- W2182175052 hasRelatedWork W2246423407 @default.
- W2182175052 hasRelatedWork W2491653148 @default.
- W2182175052 hasRelatedWork W2949894301 @default.
- W2182175052 hasRelatedWork W2950361739 @default.
- W2182175052 hasRelatedWork W2951563750 @default.
- W2182175052 hasRelatedWork W2969797296 @default.
- W2182175052 hasRelatedWork W2981160341 @default.
- W2182175052 hasRelatedWork W3037024381 @default.
- W2182175052 hasRelatedWork W992221660 @default.
- W2182175052 isParatext "false" @default.
- W2182175052 isRetracted "false" @default.
- W2182175052 magId "2182175052" @default.
- W2182175052 workType "article" @default.