Matches in SemOpenAlex for { <https://semopenalex.org/work/W2182220690> ?p ?o ?g. }
- W2182220690 abstract "Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional floating recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation of delicate micro-electromechanical devices impede the use of most direct shear sensors. Similarly, the cavity required for sensing element displacement is sensitive to particulate obstruction. This work was focused on developing a shear stress sensor for use in subsonic wind tunnel test facilities applicable to an array of test configurations. The non-displacement shear sensors described here have minimal packaging requirements resulting in minimal or no disturbance of boundary layer flow. Compared to previous concepts, device installation could be simple with reduced cost and down-time. The novelty lies in the creation of low profile (nanoscale to 100 μm) micropost arrays that stay within the viscous sub-layer of the airflow. Aerodynamic forces, which are related to the surface shear stress, cause post deflection and optical property changes. Ultimately, a reliable, accurate shear stress sensor that does not disrupt the airflow has the potential to provide high value data for flow physics researchers, aerodynamicists, and aircraft manufacturers leading to greater flight efficiency arising from more in-depth knowledge on how aircraft design impacts near surface properties." @default.
- W2182220690 created "2016-06-24" @default.
- W2182220690 creator A5007860049 @default.
- W2182220690 creator A5041240252 @default.
- W2182220690 creator A5049650135 @default.
- W2182220690 creator A5068679442 @default.
- W2182220690 creator A5068761414 @default.
- W2182220690 creator A5076186349 @default.
- W2182220690 creator A5082135824 @default.
- W2182220690 date "2015-12-01" @default.
- W2182220690 modified "2023-09-27" @default.
- W2182220690 title "Flexible Micropost Arrays for Shear Stress Measurement" @default.
- W2182220690 cites W1595479384 @default.
- W2182220690 cites W1676421722 @default.
- W2182220690 cites W1694289106 @default.
- W2182220690 cites W1963514484 @default.
- W2182220690 cites W1967428703 @default.
- W2182220690 cites W1972217699 @default.
- W2182220690 cites W1987999583 @default.
- W2182220690 cites W2009786945 @default.
- W2182220690 cites W2014306689 @default.
- W2182220690 cites W2014613714 @default.
- W2182220690 cites W2021681249 @default.
- W2182220690 cites W2025546106 @default.
- W2182220690 cites W2025859185 @default.
- W2182220690 cites W2030223092 @default.
- W2182220690 cites W2031258910 @default.
- W2182220690 cites W2031331135 @default.
- W2182220690 cites W2038478072 @default.
- W2182220690 cites W2048945469 @default.
- W2182220690 cites W2061570595 @default.
- W2182220690 cites W2063791134 @default.
- W2182220690 cites W2091631730 @default.
- W2182220690 cites W2095463202 @default.
- W2182220690 cites W2128370679 @default.
- W2182220690 cites W2135372088 @default.
- W2182220690 cites W2138257097 @default.
- W2182220690 cites W2160231789 @default.
- W2182220690 cites W2162405496 @default.
- W2182220690 cites W2312479604 @default.
- W2182220690 cites W2316500153 @default.
- W2182220690 cites W2318281057 @default.
- W2182220690 hasPublicationYear "2015" @default.
- W2182220690 type Work @default.
- W2182220690 sameAs 2182220690 @default.
- W2182220690 citedByCount "0" @default.
- W2182220690 crossrefType "journal-article" @default.
- W2182220690 hasAuthorship W2182220690A5007860049 @default.
- W2182220690 hasAuthorship W2182220690A5041240252 @default.
- W2182220690 hasAuthorship W2182220690A5049650135 @default.
- W2182220690 hasAuthorship W2182220690A5068679442 @default.
- W2182220690 hasAuthorship W2182220690A5068761414 @default.
- W2182220690 hasAuthorship W2182220690A5076186349 @default.
- W2182220690 hasAuthorship W2182220690A5082135824 @default.
- W2182220690 hasConcept C111603439 @default.
- W2182220690 hasConcept C120665830 @default.
- W2182220690 hasConcept C121332964 @default.
- W2182220690 hasConcept C127413603 @default.
- W2182220690 hasConcept C13393347 @default.
- W2182220690 hasConcept C146978453 @default.
- W2182220690 hasConcept C159985019 @default.
- W2182220690 hasConcept C192562407 @default.
- W2182220690 hasConcept C21141959 @default.
- W2182220690 hasConcept C24890656 @default.
- W2182220690 hasConcept C2778449969 @default.
- W2182220690 hasConcept C34329639 @default.
- W2182220690 hasConcept C57879066 @default.
- W2182220690 hasConcept C72921944 @default.
- W2182220690 hasConcept C78519656 @default.
- W2182220690 hasConceptScore W2182220690C111603439 @default.
- W2182220690 hasConceptScore W2182220690C120665830 @default.
- W2182220690 hasConceptScore W2182220690C121332964 @default.
- W2182220690 hasConceptScore W2182220690C127413603 @default.
- W2182220690 hasConceptScore W2182220690C13393347 @default.
- W2182220690 hasConceptScore W2182220690C146978453 @default.
- W2182220690 hasConceptScore W2182220690C159985019 @default.
- W2182220690 hasConceptScore W2182220690C192562407 @default.
- W2182220690 hasConceptScore W2182220690C21141959 @default.
- W2182220690 hasConceptScore W2182220690C24890656 @default.
- W2182220690 hasConceptScore W2182220690C2778449969 @default.
- W2182220690 hasConceptScore W2182220690C34329639 @default.
- W2182220690 hasConceptScore W2182220690C57879066 @default.
- W2182220690 hasConceptScore W2182220690C72921944 @default.
- W2182220690 hasConceptScore W2182220690C78519656 @default.
- W2182220690 hasLocation W21822206901 @default.
- W2182220690 hasOpenAccess W2182220690 @default.
- W2182220690 hasPrimaryLocation W21822206901 @default.
- W2182220690 hasRelatedWork W1556651528 @default.
- W2182220690 hasRelatedWork W1587088960 @default.
- W2182220690 hasRelatedWork W1956621108 @default.
- W2182220690 hasRelatedWork W1986275157 @default.
- W2182220690 hasRelatedWork W2016912518 @default.
- W2182220690 hasRelatedWork W2065258818 @default.
- W2182220690 hasRelatedWork W2091364849 @default.
- W2182220690 hasRelatedWork W2092885106 @default.
- W2182220690 hasRelatedWork W2094911305 @default.
- W2182220690 hasRelatedWork W2126879675 @default.
- W2182220690 hasRelatedWork W2148529316 @default.
- W2182220690 hasRelatedWork W22204482 @default.
- W2182220690 hasRelatedWork W2313068882 @default.