Matches in SemOpenAlex for { <https://semopenalex.org/work/W2182445461> ?p ?o ?g. }
- W2182445461 endingPage "258" @default.
- W2182445461 startingPage "227" @default.
- W2182445461 abstract "White muscle and arterial blood plasma were sampled at rest and during 4 h of recovery from exhaustive exercise in rainbow trout. A compound respiratory and metabolic acidosis in the blood was accompanied by increases in plasma lactate (in excess of the metabolic acid load), pyruvate, glucose, ammonia and inorganic phosphate levels, large elevations in haemoglobin concentration and haematocrit, red cell swelling, increases in the levels of most plasma electrolytes, but no shift of fluid out of the extracellular fluid (ECF) into the intracellular fluid (ICF) of white muscle. The decrease in white muscle pHi was comparable to that in pHe; both recovered by 4 h. Creatine phosphate and ATP levels were both reduced by 40% after exercise, the former recovering within 0.25 h, whereas the latter remained depressed until 4 h. Changes in creatine concentration mirrored those in creatine phosphate, whereas changes in IMP and ammonia concentration mirrored those in ATP. White muscle glycogen concentration was reduced 90% primarily by conversion to lactate; recovery was slow, to only 40% of resting glycogen levels by 4 h. During this period, most of the lactate and metabolic acid were retained in white muscle and there was excellent conservation of carbohydrate, suggesting that in situ glycogenesis rather than oxidation was the major fate of lactate. The redox state ([NAD+]/[NADH]) of the muscle cytoplasm, estimated from ICF lactate and pyruvate levels and pHi, remained unchanged from resting levels, challenging the traditional view of the 'anaerobic' production of lactate. Furthermore, the membrane potential, estimated from levels of ICF and ECF electrolytes using the Goldman equation, remained unchanged throughout, challenging the view that white muscle becomes depolarized after exhaustive exercise. Indeed, ICF K+ concentration was elevated. Lactate was distributed well out of electrochemical equilibrium with either the membrane potential (Em) or the pHe-pHi difference, supporting the view that lactate is actively retained in white muscle. In contrast, H+ was actively extruded. Ammonia was distributed passively according to Em rather than pHe-pHi throughout recovery, providing a mechanism for retaining high ICF ammonia levels for adenylate resynthesis in situ. Although lipid is not traditionally considered to be a fuel for burst exercise, substantial decreases in free carnitine and elevations in acyl-carnitines and acetyl-CoA concentrations indicated an important contribution of fatty acid oxidation by white muscle during both exercise and recovery." @default.
- W2182445461 created "2016-06-24" @default.
- W2182445461 creator A5033357055 @default.
- W2182445461 creator A5048050496 @default.
- W2182445461 creator A5051030323 @default.
- W2182445461 date "1994-10-01" @default.
- W2182445461 modified "2023-10-09" @default.
- W2182445461 title "Integrated Responses to Exhaustive Exercise and Recovery in Rainbow Trout White Muscle: Acid–Base, Phosphogen, Carbohydrate, Lipid, Ammonia, Fluid Volume and Electrolyte Metabolism" @default.
- W2182445461 cites W1801184284 @default.
- W2182445461 cites W1830967629 @default.
- W2182445461 cites W1859003939 @default.
- W2182445461 cites W1867252638 @default.
- W2182445461 cites W1869558970 @default.
- W2182445461 cites W1900311455 @default.
- W2182445461 cites W1911123234 @default.
- W2182445461 cites W1913972349 @default.
- W2182445461 cites W1918835191 @default.
- W2182445461 cites W1922081365 @default.
- W2182445461 cites W1950895160 @default.
- W2182445461 cites W1955023688 @default.
- W2182445461 cites W1971214159 @default.
- W2182445461 cites W1972577889 @default.
- W2182445461 cites W1973587542 @default.
- W2182445461 cites W1975870355 @default.
- W2182445461 cites W1980183401 @default.
- W2182445461 cites W1985142102 @default.
- W2182445461 cites W1993158413 @default.
- W2182445461 cites W1994457597 @default.
- W2182445461 cites W2004985140 @default.
- W2182445461 cites W2010887857 @default.
- W2182445461 cites W2011343950 @default.
- W2182445461 cites W2012898950 @default.
- W2182445461 cites W2032257830 @default.
- W2182445461 cites W2033912431 @default.
- W2182445461 cites W2034125793 @default.
- W2182445461 cites W2036412453 @default.
- W2182445461 cites W2039615585 @default.
- W2182445461 cites W2044069972 @default.
- W2182445461 cites W2046836481 @default.
- W2182445461 cites W2060551222 @default.
- W2182445461 cites W2063671015 @default.
- W2182445461 cites W2064034368 @default.
- W2182445461 cites W2065354190 @default.
- W2182445461 cites W2065984554 @default.
- W2182445461 cites W2066687299 @default.
- W2182445461 cites W2067312729 @default.
- W2182445461 cites W2075915084 @default.
- W2182445461 cites W2083018542 @default.
- W2182445461 cites W2084031950 @default.
- W2182445461 cites W2087926071 @default.
- W2182445461 cites W2090336686 @default.
- W2182445461 cites W2101546438 @default.
- W2182445461 cites W2106770511 @default.
- W2182445461 cites W2108298701 @default.
- W2182445461 cites W2109406561 @default.
- W2182445461 cites W2109635567 @default.
- W2182445461 cites W2129407193 @default.
- W2182445461 cites W2134919544 @default.
- W2182445461 cites W2135459913 @default.
- W2182445461 cites W2136956249 @default.
- W2182445461 cites W2142557630 @default.
- W2182445461 cites W2144518553 @default.
- W2182445461 cites W2145760037 @default.
- W2182445461 cites W2150142521 @default.
- W2182445461 cites W2153435210 @default.
- W2182445461 cites W2158330490 @default.
- W2182445461 cites W2158470575 @default.
- W2182445461 cites W2163345765 @default.
- W2182445461 cites W2166967309 @default.
- W2182445461 cites W2167855958 @default.
- W2182445461 cites W2173556929 @default.
- W2182445461 cites W2183958450 @default.
- W2182445461 cites W2188086310 @default.
- W2182445461 cites W2188686959 @default.
- W2182445461 cites W2191429776 @default.
- W2182445461 cites W2237893953 @default.
- W2182445461 cites W2250050041 @default.
- W2182445461 cites W2257370625 @default.
- W2182445461 cites W2344064916 @default.
- W2182445461 cites W2409072825 @default.
- W2182445461 cites W2467447252 @default.
- W2182445461 cites W2476833073 @default.
- W2182445461 cites W2496800290 @default.
- W2182445461 doi "https://doi.org/10.1242/jeb.195.1.227" @default.
- W2182445461 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/7964413" @default.
- W2182445461 hasPublicationYear "1994" @default.
- W2182445461 type Work @default.
- W2182445461 sameAs 2182445461 @default.
- W2182445461 citedByCount "203" @default.
- W2182445461 countsByYear W21824454612012 @default.
- W2182445461 countsByYear W21824454612013 @default.
- W2182445461 countsByYear W21824454612014 @default.
- W2182445461 countsByYear W21824454612015 @default.
- W2182445461 countsByYear W21824454612016 @default.
- W2182445461 countsByYear W21824454612017 @default.
- W2182445461 countsByYear W21824454612018 @default.
- W2182445461 countsByYear W21824454612019 @default.
- W2182445461 countsByYear W21824454612020 @default.