Matches in SemOpenAlex for { <https://semopenalex.org/work/W2182912008> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2182912008 endingPage "87" @default.
- W2182912008 startingPage "84" @default.
- W2182912008 abstract "With the rapid growth of reviews, ratings, recommendations and other forms of online expression, online opinion has turned into a kind of virtual currency for businesses looking to market their products, identify new opportunities and manage their reputations. Sentiment analysis extracts, identifies and measures the sentiment or opinion of documents as well as the topics within these documents. The Naive Bayes algorithm performs a boolean classification i.e. it classifies a document as either positive or negative according to its sentiment. We have already seen by Sayeedunnisa et al (1), that the application of Naive Bayes trained on high value features, extracted from a bag- of-words model, yields an accuracy of 89.2%. This paper studies the application of Naive Bayes technique for sentiment analysis by including training of bigram features to improve accuracy and the overall performance of the classifier. We also evaluate the impact of selecting low vs. high value features, calculated using the concepts of Information Gain. Our dataset constitutes of tweets containing movie reviews retrieved from the Twitter social network, which were obtained and analyzed on a cloud computing platform. Our experiment is divided into three steps; the first step constitutes of selecting high value features (words) from our bag-of-words model. The next step involves the identification and calculation of the probability of co-occurrence of words within the bag-of-words to derive a set of bigrams. We then used this set and the original features to re-train and test our classifier. In the final step, we selected the most informative features (unigrams + bigrams) using a Chi-Square scoring function, which yielded the best result with accuracy at 98.2%, positive precision 98%, positive recall 98.4% and negative recall 98%. It is evident from the results, that Naive Bayes performs the best when including only the most informative (high value) features which constitute of both unigrams and bigrams for training." @default.
- W2182912008 created "2016-06-24" @default.
- W2182912008 creator A5057957725 @default.
- W2182912008 creator A5070424486 @default.
- W2182912008 creator A5077854275 @default.
- W2182912008 date "2014-06-25" @default.
- W2182912008 modified "2023-09-24" @default.
- W2182912008 title "Sentiment Analysis using Naïve Bayes with Bigrams" @default.
- W2182912008 cites W1514681859 @default.
- W2182912008 cites W2048658075 @default.
- W2182912008 cites W2066590388 @default.
- W2182912008 cites W2079757842 @default.
- W2182912008 cites W2086042358 @default.
- W2182912008 cites W2097726431 @default.
- W2182912008 cites W2103333826 @default.
- W2182912008 cites W2166706824 @default.
- W2182912008 hasPublicationYear "2014" @default.
- W2182912008 type Work @default.
- W2182912008 sameAs 2182912008 @default.
- W2182912008 citedByCount "0" @default.
- W2182912008 crossrefType "proceedings-article" @default.
- W2182912008 hasAuthorship W2182912008A5057957725 @default.
- W2182912008 hasAuthorship W2182912008A5070424486 @default.
- W2182912008 hasAuthorship W2182912008A5077854275 @default.
- W2182912008 hasConcept C107673813 @default.
- W2182912008 hasConcept C108757681 @default.
- W2182912008 hasConcept C119857082 @default.
- W2182912008 hasConcept C12267149 @default.
- W2182912008 hasConcept C124101348 @default.
- W2182912008 hasConcept C137546455 @default.
- W2182912008 hasConcept C154945302 @default.
- W2182912008 hasConcept C204321447 @default.
- W2182912008 hasConcept C207201462 @default.
- W2182912008 hasConcept C23123220 @default.
- W2182912008 hasConcept C41008148 @default.
- W2182912008 hasConcept C52001869 @default.
- W2182912008 hasConcept C52003472 @default.
- W2182912008 hasConcept C66402592 @default.
- W2182912008 hasConcept C95623464 @default.
- W2182912008 hasConceptScore W2182912008C107673813 @default.
- W2182912008 hasConceptScore W2182912008C108757681 @default.
- W2182912008 hasConceptScore W2182912008C119857082 @default.
- W2182912008 hasConceptScore W2182912008C12267149 @default.
- W2182912008 hasConceptScore W2182912008C124101348 @default.
- W2182912008 hasConceptScore W2182912008C137546455 @default.
- W2182912008 hasConceptScore W2182912008C154945302 @default.
- W2182912008 hasConceptScore W2182912008C204321447 @default.
- W2182912008 hasConceptScore W2182912008C207201462 @default.
- W2182912008 hasConceptScore W2182912008C23123220 @default.
- W2182912008 hasConceptScore W2182912008C41008148 @default.
- W2182912008 hasConceptScore W2182912008C52001869 @default.
- W2182912008 hasConceptScore W2182912008C52003472 @default.
- W2182912008 hasConceptScore W2182912008C66402592 @default.
- W2182912008 hasConceptScore W2182912008C95623464 @default.
- W2182912008 hasIssue "2" @default.
- W2182912008 hasLocation W21829120081 @default.
- W2182912008 hasOpenAccess W2182912008 @default.
- W2182912008 hasPrimaryLocation W21829120081 @default.
- W2182912008 hasRelatedWork W1639137769 @default.
- W2182912008 hasRelatedWork W1896028430 @default.
- W2182912008 hasRelatedWork W198651829 @default.
- W2182912008 hasRelatedWork W207448595 @default.
- W2182912008 hasRelatedWork W2075118955 @default.
- W2182912008 hasRelatedWork W2105339080 @default.
- W2182912008 hasRelatedWork W2115453979 @default.
- W2182912008 hasRelatedWork W2295077356 @default.
- W2182912008 hasRelatedWork W2468530725 @default.
- W2182912008 hasRelatedWork W2564760299 @default.
- W2182912008 hasRelatedWork W2758288458 @default.
- W2182912008 hasRelatedWork W2911774765 @default.
- W2182912008 hasRelatedWork W3044776620 @default.
- W2182912008 hasRelatedWork W3081351851 @default.
- W2182912008 hasRelatedWork W3137893882 @default.
- W2182912008 hasRelatedWork W3155430395 @default.
- W2182912008 hasRelatedWork W3196057034 @default.
- W2182912008 hasRelatedWork W3202594729 @default.
- W2182912008 hasRelatedWork W40140205 @default.
- W2182912008 hasRelatedWork W1543132580 @default.
- W2182912008 hasVolume "4" @default.
- W2182912008 isParatext "false" @default.
- W2182912008 isRetracted "false" @default.
- W2182912008 magId "2182912008" @default.
- W2182912008 workType "article" @default.