Matches in SemOpenAlex for { <https://semopenalex.org/work/W2182912367> ?p ?o ?g. }
- W2182912367 abstract "This paper considers Aspect-based Opinion Summarization (AOS) of reviews on particular products. To enable real applications, an AOS system needs to address two core subtasks, aspect extraction and sentiment classification. Most existing approaches to aspect extraction, which use linguistic analysis or topic modeling, are general across different products but not precise enough or suitable for particular products. Instead we take a less general but more precise scheme, directly mapping each review sentence into pre-defined aspects. To tackle aspect mapping and sentiment classification, we propose two Convolutional Neural Network (CNN) based methods, cascaded CNN and multitask CNN. Cascaded CNN contains two levels of convolutional networks. Multiple CNNs at level 1 deal with aspect mapping task, and a single CNN at level 2 deals with sentiment classification. Multitask CNN also contains multiple aspect CNNs and a sentiment CNN, but different networks share the same word embeddings. Experimental results indicate that both cascaded and multitask CNNs outperform SVM-based methods by large margins. Multitask CNN generally performs better than cascaded CNN." @default.
- W2182912367 created "2016-06-24" @default.
- W2182912367 creator A5000141628 @default.
- W2182912367 creator A5007011277 @default.
- W2182912367 creator A5015589032 @default.
- W2182912367 creator A5073279735 @default.
- W2182912367 date "2015-11-29" @default.
- W2182912367 modified "2023-09-25" @default.
- W2182912367 title "Aspect-based Opinion Summarization with Convolutional Neural Networks" @default.
- W2182912367 cites W1517771839 @default.
- W2182912367 cites W1581485226 @default.
- W2182912367 cites W1665214252 @default.
- W2182912367 cites W1675450783 @default.
- W2182912367 cites W18127387 @default.
- W2182912367 cites W1832693441 @default.
- W2182912367 cites W1967274749 @default.
- W2182912367 cites W2039543580 @default.
- W2182912367 cites W2044429219 @default.
- W2182912367 cites W2049493498 @default.
- W2182912367 cites W2096110600 @default.
- W2182912367 cites W2100362224 @default.
- W2182912367 cites W2103883986 @default.
- W2182912367 cites W2108287887 @default.
- W2182912367 cites W2109634664 @default.
- W2182912367 cites W2112251034 @default.
- W2182912367 cites W2112744748 @default.
- W2182912367 cites W2113786470 @default.
- W2182912367 cites W2117261786 @default.
- W2182912367 cites W2120615054 @default.
- W2182912367 cites W2128507180 @default.
- W2182912367 cites W2129604374 @default.
- W2182912367 cites W2130549755 @default.
- W2182912367 cites W2131876387 @default.
- W2182912367 cites W2132166724 @default.
- W2182912367 cites W2144012961 @default.
- W2182912367 cites W2152571774 @default.
- W2182912367 cites W2153579005 @default.
- W2182912367 cites W2155454737 @default.
- W2182912367 cites W2158899491 @default.
- W2182912367 cites W2159457224 @default.
- W2182912367 cites W2163605009 @default.
- W2182912367 cites W2166706824 @default.
- W2182912367 cites W2166888604 @default.
- W2182912367 cites W2186845332 @default.
- W2182912367 cites W2250521169 @default.
- W2182912367 cites W2251192610 @default.
- W2182912367 cites W2252012216 @default.
- W2182912367 cites W2252215182 @default.
- W2182912367 cites W2295072214 @default.
- W2182912367 cites W2950179405 @default.
- W2182912367 cites W582033733 @default.
- W2182912367 doi "https://doi.org/10.48550/arxiv.1511.09128" @default.
- W2182912367 hasPublicationYear "2015" @default.
- W2182912367 type Work @default.
- W2182912367 sameAs 2182912367 @default.
- W2182912367 citedByCount "1" @default.
- W2182912367 countsByYear W21829123672016 @default.
- W2182912367 crossrefType "posted-content" @default.
- W2182912367 hasAuthorship W2182912367A5000141628 @default.
- W2182912367 hasAuthorship W2182912367A5007011277 @default.
- W2182912367 hasAuthorship W2182912367A5015589032 @default.
- W2182912367 hasAuthorship W2182912367A5073279735 @default.
- W2182912367 hasBestOaLocation W21829123671 @default.
- W2182912367 hasConcept C119857082 @default.
- W2182912367 hasConcept C153180895 @default.
- W2182912367 hasConcept C154945302 @default.
- W2182912367 hasConcept C162324750 @default.
- W2182912367 hasConcept C170858558 @default.
- W2182912367 hasConcept C187736073 @default.
- W2182912367 hasConcept C204321447 @default.
- W2182912367 hasConcept C2777530160 @default.
- W2182912367 hasConcept C2780451532 @default.
- W2182912367 hasConcept C41008148 @default.
- W2182912367 hasConcept C66402592 @default.
- W2182912367 hasConcept C81363708 @default.
- W2182912367 hasConceptScore W2182912367C119857082 @default.
- W2182912367 hasConceptScore W2182912367C153180895 @default.
- W2182912367 hasConceptScore W2182912367C154945302 @default.
- W2182912367 hasConceptScore W2182912367C162324750 @default.
- W2182912367 hasConceptScore W2182912367C170858558 @default.
- W2182912367 hasConceptScore W2182912367C187736073 @default.
- W2182912367 hasConceptScore W2182912367C204321447 @default.
- W2182912367 hasConceptScore W2182912367C2777530160 @default.
- W2182912367 hasConceptScore W2182912367C2780451532 @default.
- W2182912367 hasConceptScore W2182912367C41008148 @default.
- W2182912367 hasConceptScore W2182912367C66402592 @default.
- W2182912367 hasConceptScore W2182912367C81363708 @default.
- W2182912367 hasLocation W21829123671 @default.
- W2182912367 hasLocation W21829123672 @default.
- W2182912367 hasOpenAccess W2182912367 @default.
- W2182912367 hasPrimaryLocation W21829123671 @default.
- W2182912367 hasRelatedWork W2008129036 @default.
- W2182912367 hasRelatedWork W2104752822 @default.
- W2182912367 hasRelatedWork W2330186386 @default.
- W2182912367 hasRelatedWork W2347941600 @default.
- W2182912367 hasRelatedWork W2408058564 @default.
- W2182912367 hasRelatedWork W2747680751 @default.
- W2182912367 hasRelatedWork W2793376154 @default.
- W2182912367 hasRelatedWork W3152966760 @default.
- W2182912367 hasRelatedWork W4360986142 @default.