Matches in SemOpenAlex for { <https://semopenalex.org/work/W2182981722> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2182981722 abstract "To understand the generating causes of pedestrian movement is very important for urban planning tasks, because it is possible to infer if attitudes taken in the conception and maintenance of the spaces are in fact contributing to the social dynamics. However, to determine pedestrian flows is a difficult task due to the complexity of people movement. A way to outline this problem is through the creation of models which associate the attributes and their relationships directly to the studied phenomena. The model used here uses two kinds of variables: the configurational ones obtained through the axial map of the city where the study area is located, and the performance measures obtained through the physical evaluation of the attributes of the sidewalks of the studied area. The output of the model is the mean pedestrian rate of the area. The Syntax Space theory is useful for understanding the phenomenon because of the way it deals with space interaction. However, though it is able in predicting part of the movement, we do not find significant correlations when the measure of intelligibility is low. Pedestrian flows are a complex phenomenon and, per se, cannot be understood through linear relationships among any couple of variables, being them spatial or not. In this paper it is argued that the space syntax theory and measures explain the pedestrian movement as a phenomenon emerged from society, but the linear approach is not capable of explaining their relationships. The presented model uses Artificial Neural Nets (ANN), a parallel processing tool with the capacity of working through examples, learning, generalizing and abstracting the variables information and their connections. The implementation of these kinds of models evolves from 'black boxes' to models that can be 'disassembled' and evaluated inside of its logical structure. The ANN uses two groups of data: one for training nets and the other one for validating the network. Thus, the performance of the ANN can be tested with unknown data. The results produced so far have shown that ANN can learn the main features of the data sets with an accuracy of more than 90% of correlation coefficient and with an average error smaller than 0.02. It must be said that the research work targets to spread the samples from different configurational realities and expand the data bank on measured movement in order to improve the accuracy of the model, such as being done lately." @default.
- W2182981722 created "2016-06-24" @default.
- W2182981722 creator A5000682447 @default.
- W2182981722 creator A5033085230 @default.
- W2182981722 creator A5072920751 @default.
- W2182981722 date "2009-01-01" @default.
- W2182981722 modified "2023-09-27" @default.
- W2182981722 title "Evaluated Model of Pedestrian Movement Based on Space Syntax, Performance Measures and Artificial Neural Nets" @default.
- W2182981722 cites W1440180199 @default.
- W2182981722 cites W1833005471 @default.
- W2182981722 cites W194697724 @default.
- W2182981722 cites W1979973762 @default.
- W2182981722 cites W1985205172 @default.
- W2182981722 cites W2001467487 @default.
- W2182981722 cites W2032340332 @default.
- W2182981722 cites W2033921269 @default.
- W2182981722 cites W2074599623 @default.
- W2182981722 cites W2169053895 @default.
- W2182981722 cites W586343648 @default.
- W2182981722 cites W2603377833 @default.
- W2182981722 cites W2739089720 @default.
- W2182981722 hasPublicationYear "2009" @default.
- W2182981722 type Work @default.
- W2182981722 sameAs 2182981722 @default.
- W2182981722 citedByCount "1" @default.
- W2182981722 countsByYear W21829817222013 @default.
- W2182981722 crossrefType "journal-article" @default.
- W2182981722 hasAuthorship W2182981722A5000682447 @default.
- W2182981722 hasAuthorship W2182981722A5033085230 @default.
- W2182981722 hasAuthorship W2182981722A5072920751 @default.
- W2182981722 hasConcept C111472728 @default.
- W2182981722 hasConcept C111919701 @default.
- W2182981722 hasConcept C121332964 @default.
- W2182981722 hasConcept C124101348 @default.
- W2182981722 hasConcept C138885662 @default.
- W2182981722 hasConcept C154945302 @default.
- W2182981722 hasConcept C166957645 @default.
- W2182981722 hasConcept C205649164 @default.
- W2182981722 hasConcept C24890656 @default.
- W2182981722 hasConcept C2777103068 @default.
- W2182981722 hasConcept C2777113093 @default.
- W2182981722 hasConcept C2778572836 @default.
- W2182981722 hasConcept C2780009758 @default.
- W2182981722 hasConcept C2780226923 @default.
- W2182981722 hasConcept C41008148 @default.
- W2182981722 hasConcept C50335755 @default.
- W2182981722 hasConcept C50644808 @default.
- W2182981722 hasConcept C60048249 @default.
- W2182981722 hasConceptScore W2182981722C111472728 @default.
- W2182981722 hasConceptScore W2182981722C111919701 @default.
- W2182981722 hasConceptScore W2182981722C121332964 @default.
- W2182981722 hasConceptScore W2182981722C124101348 @default.
- W2182981722 hasConceptScore W2182981722C138885662 @default.
- W2182981722 hasConceptScore W2182981722C154945302 @default.
- W2182981722 hasConceptScore W2182981722C166957645 @default.
- W2182981722 hasConceptScore W2182981722C205649164 @default.
- W2182981722 hasConceptScore W2182981722C24890656 @default.
- W2182981722 hasConceptScore W2182981722C2777103068 @default.
- W2182981722 hasConceptScore W2182981722C2777113093 @default.
- W2182981722 hasConceptScore W2182981722C2778572836 @default.
- W2182981722 hasConceptScore W2182981722C2780009758 @default.
- W2182981722 hasConceptScore W2182981722C2780226923 @default.
- W2182981722 hasConceptScore W2182981722C41008148 @default.
- W2182981722 hasConceptScore W2182981722C50335755 @default.
- W2182981722 hasConceptScore W2182981722C50644808 @default.
- W2182981722 hasConceptScore W2182981722C60048249 @default.
- W2182981722 hasLocation W21829817221 @default.
- W2182981722 hasOpenAccess W2182981722 @default.
- W2182981722 hasPrimaryLocation W21829817221 @default.
- W2182981722 hasRelatedWork W1524761378 @default.
- W2182981722 hasRelatedWork W1969712359 @default.
- W2182981722 hasRelatedWork W1979973762 @default.
- W2182981722 hasRelatedWork W2150742222 @default.
- W2182981722 hasRelatedWork W2166736021 @default.
- W2182981722 hasRelatedWork W2171296290 @default.
- W2182981722 hasRelatedWork W2171901700 @default.
- W2182981722 hasRelatedWork W2182473197 @default.
- W2182981722 hasRelatedWork W2621208200 @default.
- W2182981722 hasRelatedWork W2906976759 @default.
- W2182981722 hasRelatedWork W2909206337 @default.
- W2182981722 hasRelatedWork W2971611501 @default.
- W2182981722 hasRelatedWork W2994903552 @default.
- W2182981722 hasRelatedWork W3089123516 @default.
- W2182981722 hasRelatedWork W3103899093 @default.
- W2182981722 hasRelatedWork W3116730795 @default.
- W2182981722 hasRelatedWork W3171780980 @default.
- W2182981722 hasRelatedWork W3190813577 @default.
- W2182981722 hasRelatedWork W2108469611 @default.
- W2182981722 hasRelatedWork W2186428909 @default.
- W2182981722 isParatext "false" @default.
- W2182981722 isRetracted "false" @default.
- W2182981722 magId "2182981722" @default.
- W2182981722 workType "article" @default.