Matches in SemOpenAlex for { <https://semopenalex.org/work/W2182998675> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2182998675 abstract "This document presents the final report of the thesis “Telecommunication Fraud Detection Using Data Mining Techniques”, were a study is made over the effect of the unbalanced data, generated by the Telecommunications Industry, in the construction and performance of classifiers that allows the detection and prevention of frauds. In this subject, an unbalanced data set is characterized by an uneven class distribution where the amount of fraudulent instances (positive) is substantially smaller than the amount normal instances (negative). This will result in a classifier which is most likely to classify data has belonging to the normal class then to the fraud class. At first, an overall inspection is made over the data characteristics and the Naive Bayes model, which is the classifier selected to do the anomaly detection on these experiments. After the characteristics are presented, a feature engineering stage is done with the intent to extend the information contained in the data creating a depper relation with the data itself and model characteristics. A previously proposed solution that consists on undersampling the most abundant class (normal) before building the model, is presented and tested. In the end, the new proposals are presented. The first proposal is to study the effects of changing the intrinsic class distribution parameter in the Naive Bayes model and evaluate its performance. The second proposal consists in estimating margin values that when applied to the model output, attempt to bring more positive instances from previous negative classification. All of these suggested models are validated over a monte-carlo experiment, using data with and without the engineered features." @default.
- W2182998675 created "2016-06-24" @default.
- W2182998675 creator A5064915685 @default.
- W2182998675 creator A5089429507 @default.
- W2182998675 date "2014-01-01" @default.
- W2182998675 modified "2023-09-27" @default.
- W2182998675 title "Telecommunication Fraud Detection Using Data Mining techniques" @default.
- W2182998675 cites W1517113043 @default.
- W2182998675 cites W1533970595 @default.
- W2182998675 cites W1549887922 @default.
- W2182998675 cites W1562615108 @default.
- W2182998675 cites W1605311381 @default.
- W2182998675 cites W1636210188 @default.
- W2182998675 cites W1692347747 @default.
- W2182998675 cites W1912123407 @default.
- W2182998675 cites W1945526402 @default.
- W2182998675 cites W2007087405 @default.
- W2182998675 cites W2012742106 @default.
- W2182998675 cites W2020275022 @default.
- W2182998675 cites W2038845026 @default.
- W2182998675 cites W2056352422 @default.
- W2182998675 cites W21022787 @default.
- W2182998675 cites W2110652011 @default.
- W2182998675 cites W2122646361 @default.
- W2182998675 cites W2135689168 @default.
- W2182998675 cites W2140190241 @default.
- W2182998675 cites W2146935111 @default.
- W2182998675 cites W2150299397 @default.
- W2182998675 cites W2160726788 @default.
- W2182998675 cites W2364618197 @default.
- W2182998675 hasPublicationYear "2014" @default.
- W2182998675 type Work @default.
- W2182998675 sameAs 2182998675 @default.
- W2182998675 citedByCount "1" @default.
- W2182998675 countsByYear W21829986752016 @default.
- W2182998675 crossrefType "journal-article" @default.
- W2182998675 hasAuthorship W2182998675A5064915685 @default.
- W2182998675 hasAuthorship W2182998675A5089429507 @default.
- W2182998675 hasConcept C119857082 @default.
- W2182998675 hasConcept C12267149 @default.
- W2182998675 hasConcept C124101348 @default.
- W2182998675 hasConcept C136536468 @default.
- W2182998675 hasConcept C153180895 @default.
- W2182998675 hasConcept C154945302 @default.
- W2182998675 hasConcept C41008148 @default.
- W2182998675 hasConcept C52001869 @default.
- W2182998675 hasConcept C739882 @default.
- W2182998675 hasConcept C95623464 @default.
- W2182998675 hasConceptScore W2182998675C119857082 @default.
- W2182998675 hasConceptScore W2182998675C12267149 @default.
- W2182998675 hasConceptScore W2182998675C124101348 @default.
- W2182998675 hasConceptScore W2182998675C136536468 @default.
- W2182998675 hasConceptScore W2182998675C153180895 @default.
- W2182998675 hasConceptScore W2182998675C154945302 @default.
- W2182998675 hasConceptScore W2182998675C41008148 @default.
- W2182998675 hasConceptScore W2182998675C52001869 @default.
- W2182998675 hasConceptScore W2182998675C739882 @default.
- W2182998675 hasConceptScore W2182998675C95623464 @default.
- W2182998675 hasLocation W21829986751 @default.
- W2182998675 hasOpenAccess W2182998675 @default.
- W2182998675 hasPrimaryLocation W21829986751 @default.
- W2182998675 hasRelatedWork W1602698101 @default.
- W2182998675 hasRelatedWork W1967128172 @default.
- W2182998675 hasRelatedWork W19710414 @default.
- W2182998675 hasRelatedWork W1997864840 @default.
- W2182998675 hasRelatedWork W2040661907 @default.
- W2182998675 hasRelatedWork W2185093496 @default.
- W2182998675 hasRelatedWork W2411366180 @default.
- W2182998675 hasRelatedWork W2610381844 @default.
- W2182998675 hasRelatedWork W2617227509 @default.
- W2182998675 hasRelatedWork W2899832300 @default.
- W2182998675 hasRelatedWork W2901798659 @default.
- W2182998675 hasRelatedWork W2907132304 @default.
- W2182998675 hasRelatedWork W2964551072 @default.
- W2182998675 hasRelatedWork W2978886379 @default.
- W2182998675 hasRelatedWork W2991209718 @default.
- W2182998675 hasRelatedWork W3035777675 @default.
- W2182998675 hasRelatedWork W3189787917 @default.
- W2182998675 hasRelatedWork W830349550 @default.
- W2182998675 hasRelatedWork W866358875 @default.
- W2182998675 hasRelatedWork W2877323285 @default.
- W2182998675 isParatext "false" @default.
- W2182998675 isRetracted "false" @default.
- W2182998675 magId "2182998675" @default.
- W2182998675 workType "article" @default.