Matches in SemOpenAlex for { <https://semopenalex.org/work/W2183089970> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2183089970 endingPage "91" @default.
- W2183089970 startingPage "1" @default.
- W2183089970 abstract "Human being faces two key problems: world-wide energy shortage and global climate worming. To reduce energy consumption and carbon emission, it needs to develop high efficiency heat transfer devices. In view of the fact that the existing enhanced technologies are mostly developed according to the experiences on the one hand, and the heat transfer enhancement is normally accompanied by large additional pumping power induced by flow resistances on the other hand, in this chapter, the field synergy principle for convective heat transfer optimization is presented based on the revisit of physical mechanism of convective heat transfer. This principle indicates that the improvement of the synergy of velocity and temperature gradient fields will raise the convective heat transfer rate under the same other conditions. To describe the degree of the synergy between velocity and temperature gradient fields a non-dimensional parameter, named as synergy number, is defined, which represents the thermal performance of convective heat transfer. In order to explore the physical essence of the field synergy principle a new quantity of entransy is introduced, which describes the heat transfer ability of a body and dissipates during hear transfer. Since the entransy dissipation is the measure of the irreversibility of heat transfer process for the purpose of object heating the extremum entransy dissipation (EED) principle for heat transfer optimization is proposed, which states: for the prescribed heat flux boundary conditions, the least entransy dissipation rate in the domain leads to the minimum boundary temperature difference, or the largest entransy dissipation rate leads to the maximum heat flux with a prescribed boundary temperature difference. For volume-to-point problem optimization, the results indicate that the optimal distribution of thermal conductivity according to the EED principle leads to the lowest average domain temperature, which is lower than that with the minimum entropy generation (MEG) as the optimization criterion. This indicates that the EED principle is more preferable than the MEG principle for heat conduction optimization with the purpose of the domain temperature reduction. For convective heat transfer optimization, the field synergy equations for both laminar and turbulent convective heat transfer are derived by variational analysis for a given viscous dissipation (pumping power). The optimal flow fields for several tube flows were obtained by solving the field synergy equation. Consequently, some enhanced tubes, such as, alternation elliptical axis tube, discrete double inclined ribs tube, are developed, which may generate a velocity field close to the optimal one. Experimental and numerical studies of heat transfer performances for such enhanced tubes show that they have high heat transfer rate with low increased flow resistance. Finally, both the field synergy principle and the EED principle are extended to be applied for the heat exchanger optimization and mass convection optimization." @default.
- W2183089970 created "2016-06-24" @default.
- W2183089970 creator A5007992168 @default.
- W2183089970 creator A5049801163 @default.
- W2183089970 date "2011-01-01" @default.
- W2183089970 modified "2023-09-24" @default.
- W2183089970 title "Optimization Principles for Heat Convection" @default.
- W2183089970 cites W1957753328 @default.
- W2183089970 cites W1964667726 @default.
- W2183089970 cites W1975495747 @default.
- W2183089970 cites W1976770341 @default.
- W2183089970 cites W1989599964 @default.
- W2183089970 cites W1991706047 @default.
- W2183089970 cites W1995575813 @default.
- W2183089970 cites W1996200897 @default.
- W2183089970 cites W2002116790 @default.
- W2183089970 cites W2003052926 @default.
- W2183089970 cites W2010880657 @default.
- W2183089970 cites W2012148124 @default.
- W2183089970 cites W2018343918 @default.
- W2183089970 cites W2018623541 @default.
- W2183089970 cites W2024229858 @default.
- W2183089970 cites W2030096610 @default.
- W2183089970 cites W2030915291 @default.
- W2183089970 cites W2031320386 @default.
- W2183089970 cites W2042843613 @default.
- W2183089970 cites W2044719312 @default.
- W2183089970 cites W2048719000 @default.
- W2183089970 cites W2052820710 @default.
- W2183089970 cites W2056706592 @default.
- W2183089970 cites W2057967917 @default.
- W2183089970 cites W2058963084 @default.
- W2183089970 cites W2064642495 @default.
- W2183089970 cites W2077473698 @default.
- W2183089970 cites W2078112629 @default.
- W2183089970 cites W2081899382 @default.
- W2183089970 cites W2085230591 @default.
- W2183089970 cites W2091450609 @default.
- W2183089970 cites W2108258680 @default.
- W2183089970 cites W2110034275 @default.
- W2183089970 cites W2111427932 @default.
- W2183089970 cites W2111441192 @default.
- W2183089970 cites W2113594373 @default.
- W2183089970 cites W2150132925 @default.
- W2183089970 cites W2172011321 @default.
- W2183089970 cites W2324422410 @default.
- W2183089970 cites W4245381822 @default.
- W2183089970 doi "https://doi.org/10.1007/978-3-642-19466-5_1" @default.
- W2183089970 hasPublicationYear "2011" @default.
- W2183089970 type Work @default.
- W2183089970 sameAs 2183089970 @default.
- W2183089970 citedByCount "7" @default.
- W2183089970 countsByYear W21830899702012 @default.
- W2183089970 countsByYear W21830899702013 @default.
- W2183089970 countsByYear W21830899702019 @default.
- W2183089970 countsByYear W21830899702021 @default.
- W2183089970 crossrefType "book-chapter" @default.
- W2183089970 hasAuthorship W2183089970A5007992168 @default.
- W2183089970 hasAuthorship W2183089970A5049801163 @default.
- W2183089970 hasConcept C10899652 @default.
- W2183089970 hasConcept C121332964 @default.
- W2183089970 hasConcept C192562407 @default.
- W2183089970 hasConcept C41008148 @default.
- W2183089970 hasConcept C57879066 @default.
- W2183089970 hasConceptScore W2183089970C10899652 @default.
- W2183089970 hasConceptScore W2183089970C121332964 @default.
- W2183089970 hasConceptScore W2183089970C192562407 @default.
- W2183089970 hasConceptScore W2183089970C41008148 @default.
- W2183089970 hasConceptScore W2183089970C57879066 @default.
- W2183089970 hasLocation W21830899701 @default.
- W2183089970 hasOpenAccess W2183089970 @default.
- W2183089970 hasPrimaryLocation W21830899701 @default.
- W2183089970 hasRelatedWork W1981529536 @default.
- W2183089970 hasRelatedWork W2008122588 @default.
- W2183089970 hasRelatedWork W2025273679 @default.
- W2183089970 hasRelatedWork W2061790873 @default.
- W2183089970 hasRelatedWork W2158621817 @default.
- W2183089970 hasRelatedWork W2313459004 @default.
- W2183089970 hasRelatedWork W2899084033 @default.
- W2183089970 hasRelatedWork W48089053 @default.
- W2183089970 hasRelatedWork W77200769 @default.
- W2183089970 hasRelatedWork W2416840162 @default.
- W2183089970 isParatext "false" @default.
- W2183089970 isRetracted "false" @default.
- W2183089970 magId "2183089970" @default.
- W2183089970 workType "book-chapter" @default.