Matches in SemOpenAlex for { <https://semopenalex.org/work/W2183109801> ?p ?o ?g. }
- W2183109801 endingPage "39" @default.
- W2183109801 startingPage "28" @default.
- W2183109801 abstract "An integrated statistical and data-driven (ISD) framework was proposed for analyzing river flows and flood frequencies in the Duhe River Basin, China, under climate change. The proposed framework involved four major components: (i) a hybrid model based on ASD (Automated regression-based Statistical Downscaling tool) and KNN (K-nearest neighbor) was used for downscaling rainfall and CDEN (Conditional Density Estimate Network) was applied for downscaling minimum temperature and relative humidity from global circulation models (GCMs) to local weather stations; (ii) Bayesian neural network (BNN) was used for simulating monthly river flows based on projected weather information; (iii) KNN was applied for converting monthly flow to daily time series; (iv) Generalized Extreme Value (GEV) distribution was adopted for flood frequency analysis. In this study, the variables from CGCM3 A2 and HadCM3 A2 scenarios were employed as the large-scale predictors. The results indicated that the maximum monthly and annual runoffs would both increase under CGCM3 and HadCM3 A2 emission scenarios at the middle and end of this century. The flood risk in the study area would generally increase with a widening uncertainty range. Compared with traditional approaches, the proposed framework takes the full advantages of a series of statistical and data-driven methods and offers a parsimonious way of projecting flood risks under climatic change conditions." @default.
- W2183109801 created "2016-06-24" @default.
- W2183109801 creator A5010297816 @default.
- W2183109801 creator A5030368647 @default.
- W2183109801 creator A5052747473 @default.
- W2183109801 date "2016-02-01" @default.
- W2183109801 modified "2023-10-11" @default.
- W2183109801 title "An integrated statistical and data-driven framework for supporting flood risk analysis under climate change" @default.
- W2183109801 cites W1504794133 @default.
- W2183109801 cites W1516277321 @default.
- W2183109801 cites W1519392357 @default.
- W2183109801 cites W1580095257 @default.
- W2183109801 cites W1627096583 @default.
- W2183109801 cites W1661860198 @default.
- W2183109801 cites W1936090995 @default.
- W2183109801 cites W1966396962 @default.
- W2183109801 cites W1969125382 @default.
- W2183109801 cites W1970688798 @default.
- W2183109801 cites W1973965874 @default.
- W2183109801 cites W1974038018 @default.
- W2183109801 cites W1974283773 @default.
- W2183109801 cites W1979653734 @default.
- W2183109801 cites W1980346899 @default.
- W2183109801 cites W1983724666 @default.
- W2183109801 cites W1984874631 @default.
- W2183109801 cites W1985116968 @default.
- W2183109801 cites W1993621529 @default.
- W2183109801 cites W1995559064 @default.
- W2183109801 cites W1995797217 @default.
- W2183109801 cites W2014685742 @default.
- W2183109801 cites W2015509665 @default.
- W2183109801 cites W2023476428 @default.
- W2183109801 cites W2023606338 @default.
- W2183109801 cites W2024966118 @default.
- W2183109801 cites W2026156015 @default.
- W2183109801 cites W2027115788 @default.
- W2183109801 cites W2029765118 @default.
- W2183109801 cites W2033012550 @default.
- W2183109801 cites W2035708526 @default.
- W2183109801 cites W2035888601 @default.
- W2183109801 cites W2038301573 @default.
- W2183109801 cites W2040584397 @default.
- W2183109801 cites W2042980138 @default.
- W2183109801 cites W2052616784 @default.
- W2183109801 cites W2055578622 @default.
- W2183109801 cites W2057639202 @default.
- W2183109801 cites W2063683139 @default.
- W2183109801 cites W2065512577 @default.
- W2183109801 cites W2066871111 @default.
- W2183109801 cites W2071315043 @default.
- W2183109801 cites W2075701907 @default.
- W2183109801 cites W2083029259 @default.
- W2183109801 cites W2084696946 @default.
- W2183109801 cites W2086164381 @default.
- W2183109801 cites W2089548452 @default.
- W2183109801 cites W2093141926 @default.
- W2183109801 cites W2096945217 @default.
- W2183109801 cites W2101077148 @default.
- W2183109801 cites W2107600083 @default.
- W2183109801 cites W2108250250 @default.
- W2183109801 cites W2112702040 @default.
- W2183109801 cites W2115471483 @default.
- W2183109801 cites W2118433870 @default.
- W2183109801 cites W2122974524 @default.
- W2183109801 cites W2125443108 @default.
- W2183109801 cites W2154337975 @default.
- W2183109801 cites W2155112295 @default.
- W2183109801 cites W2155259172 @default.
- W2183109801 cites W2741389506 @default.
- W2183109801 doi "https://doi.org/10.1016/j.jhydrol.2015.11.041" @default.
- W2183109801 hasPublicationYear "2016" @default.
- W2183109801 type Work @default.
- W2183109801 sameAs 2183109801 @default.
- W2183109801 citedByCount "26" @default.
- W2183109801 countsByYear W21831098012016 @default.
- W2183109801 countsByYear W21831098012017 @default.
- W2183109801 countsByYear W21831098012018 @default.
- W2183109801 countsByYear W21831098012019 @default.
- W2183109801 countsByYear W21831098012020 @default.
- W2183109801 countsByYear W21831098012021 @default.
- W2183109801 countsByYear W21831098012022 @default.
- W2183109801 crossrefType "journal-article" @default.
- W2183109801 hasAuthorship W2183109801A5010297816 @default.
- W2183109801 hasAuthorship W2183109801A5030368647 @default.
- W2183109801 hasAuthorship W2183109801A5052747473 @default.
- W2183109801 hasConcept C107054158 @default.
- W2183109801 hasConcept C111368507 @default.
- W2183109801 hasConcept C126645576 @default.
- W2183109801 hasConcept C127313418 @default.
- W2183109801 hasConcept C132651083 @default.
- W2183109801 hasConcept C141452985 @default.
- W2183109801 hasConcept C143742823 @default.
- W2183109801 hasConcept C153294291 @default.
- W2183109801 hasConcept C166957645 @default.
- W2183109801 hasConcept C183195422 @default.
- W2183109801 hasConcept C205649164 @default.
- W2183109801 hasConcept C39432304 @default.
- W2183109801 hasConcept C41156917 @default.