Matches in SemOpenAlex for { <https://semopenalex.org/work/W2183257309> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2183257309 abstract "Request classification is one of important strategies of Web. User behavior analysis can make Web service more intelligent and secure. Recently, tree structures have become a popular way for storing and manipulating huge amount of data. The classification of these data can facilitate storage, retrieval, indexing, query answering and different processing operations. In this paper, we propose User- Classifier algorithm for rule based classification of tree structured data that to classify web log user. This algorithm is based on extracting special tree pattern from training dataset. Our experiments show that User- Classifier reduces running time. In the case of complete classification, User- Classifier shows the best classification quality. With the continuous growth of data in web, different knowledge discovery tasks have become increasingly important. In this paper we intend to focus on the classification task. This task can be defined as follow: Given a set of training data classified into some predefined categories, learn to automatically categorize new data. Classifying based on using only the content of trees ignores a significant amount of structural information hidden in the structure of trees. Therefore, recently (mainly from 2003) a growing interest has been emerged to develop new approaches which use the structural information of trees. (Zaki and Aggarwal, 2006) Discussed the idea of constructing structural rules and proposed XRule algorithm for classification of XML documents. During the training phase, this algorithm finds the structures which are most related to the class variable. During the testing phase these structures are used to perform the structural classification. (Zaki and Aggarwal, 2006) Showed that this classifier is significantly more effective than text classifiers due to its ability in use of distinguishing structures. For real datasets, the accuracy of XRule is 2- 4% better than CBA (Liu et al., 1998) and SVM (Joachims, 2002). Based on our best knowledge and to the time of writing this paper, XRule is the most effective algorithm for classification of tree structured data. In rule based classifiers (such as XRule), pattern extraction phase plays an important role on the accuracy and efficiency of the algorithm. Different types of tree patterns can be extracted from a forest of trees. In this paper, we improve XRule by using different types of patterns. We propose User- Classifier a structural classifier based on closed induced tree patterns. We show that in the complete classification User- Classifier gives the best classification quality compared to XRule. Furthermore, its running time and complexity are always less than XRule. Related Workes:" @default.
- W2183257309 created "2016-06-24" @default.
- W2183257309 creator A5001951907 @default.
- W2183257309 creator A5036991160 @default.
- W2183257309 date "2011-01-01" @default.
- W2183257309 modified "2023-09-24" @default.
- W2183257309 title "Proposing a Classification Algorithm for User Identification According To User Web Log Analysis" @default.
- W2183257309 cites W1494147055 @default.
- W2183257309 cites W1505155935 @default.
- W2183257309 cites W1514542003 @default.
- W2183257309 cites W1520566981 @default.
- W2183257309 cites W1520963883 @default.
- W2183257309 cites W1540550673 @default.
- W2183257309 cites W1581082785 @default.
- W2183257309 cites W1592758009 @default.
- W2183257309 cites W1675907225 @default.
- W2183257309 cites W2020316999 @default.
- W2183257309 cites W2022679416 @default.
- W2183257309 cites W2088658068 @default.
- W2183257309 cites W2092616252 @default.
- W2183257309 cites W2094034674 @default.
- W2183257309 cites W2100588761 @default.
- W2183257309 cites W2121317427 @default.
- W2183257309 cites W2133378824 @default.
- W2183257309 cites W2140158493 @default.
- W2183257309 cites W2147924997 @default.
- W2183257309 cites W2154642793 @default.
- W2183257309 cites W2159293599 @default.
- W2183257309 cites W2164539421 @default.
- W2183257309 cites W2167681385 @default.
- W2183257309 cites W2440833291 @default.
- W2183257309 cites W56896489 @default.
- W2183257309 cites W2736246573 @default.
- W2183257309 hasPublicationYear "2011" @default.
- W2183257309 type Work @default.
- W2183257309 sameAs 2183257309 @default.
- W2183257309 citedByCount "0" @default.
- W2183257309 crossrefType "journal-article" @default.
- W2183257309 hasAuthorship W2183257309A5001951907 @default.
- W2183257309 hasAuthorship W2183257309A5036991160 @default.
- W2183257309 hasConcept C110083411 @default.
- W2183257309 hasConcept C119857082 @default.
- W2183257309 hasConcept C124101348 @default.
- W2183257309 hasConcept C136764020 @default.
- W2183257309 hasConcept C154945302 @default.
- W2183257309 hasConcept C197046077 @default.
- W2183257309 hasConcept C23123220 @default.
- W2183257309 hasConcept C35578498 @default.
- W2183257309 hasConcept C41008148 @default.
- W2183257309 hasConcept C5481197 @default.
- W2183257309 hasConcept C75165309 @default.
- W2183257309 hasConcept C84525736 @default.
- W2183257309 hasConcept C8797682 @default.
- W2183257309 hasConcept C94124525 @default.
- W2183257309 hasConcept C95623464 @default.
- W2183257309 hasConceptScore W2183257309C110083411 @default.
- W2183257309 hasConceptScore W2183257309C119857082 @default.
- W2183257309 hasConceptScore W2183257309C124101348 @default.
- W2183257309 hasConceptScore W2183257309C136764020 @default.
- W2183257309 hasConceptScore W2183257309C154945302 @default.
- W2183257309 hasConceptScore W2183257309C197046077 @default.
- W2183257309 hasConceptScore W2183257309C23123220 @default.
- W2183257309 hasConceptScore W2183257309C35578498 @default.
- W2183257309 hasConceptScore W2183257309C41008148 @default.
- W2183257309 hasConceptScore W2183257309C5481197 @default.
- W2183257309 hasConceptScore W2183257309C75165309 @default.
- W2183257309 hasConceptScore W2183257309C84525736 @default.
- W2183257309 hasConceptScore W2183257309C8797682 @default.
- W2183257309 hasConceptScore W2183257309C94124525 @default.
- W2183257309 hasConceptScore W2183257309C95623464 @default.
- W2183257309 hasLocation W21832573091 @default.
- W2183257309 hasOpenAccess W2183257309 @default.
- W2183257309 hasPrimaryLocation W21832573091 @default.
- W2183257309 hasRelatedWork W1801618155 @default.
- W2183257309 hasRelatedWork W1980749268 @default.
- W2183257309 hasRelatedWork W1984295726 @default.
- W2183257309 hasRelatedWork W1991158346 @default.
- W2183257309 hasRelatedWork W1999236014 @default.
- W2183257309 hasRelatedWork W2050111274 @default.
- W2183257309 hasRelatedWork W2189067125 @default.
- W2183257309 hasRelatedWork W2358301065 @default.
- W2183257309 hasRelatedWork W2508392542 @default.
- W2183257309 hasRelatedWork W2516334057 @default.
- W2183257309 hasRelatedWork W2615178119 @default.
- W2183257309 hasRelatedWork W2765202980 @default.
- W2183257309 hasRelatedWork W2789162741 @default.
- W2183257309 hasRelatedWork W2965593450 @default.
- W2183257309 hasRelatedWork W2982332369 @default.
- W2183257309 hasRelatedWork W3046764523 @default.
- W2183257309 hasRelatedWork W3129592458 @default.
- W2183257309 hasRelatedWork W3134032337 @default.
- W2183257309 hasRelatedWork W3166459988 @default.
- W2183257309 hasRelatedWork W72095881 @default.
- W2183257309 isParatext "false" @default.
- W2183257309 isRetracted "false" @default.
- W2183257309 magId "2183257309" @default.
- W2183257309 workType "article" @default.