Matches in SemOpenAlex for { <https://semopenalex.org/work/W2183278137> ?p ?o ?g. }
- W2183278137 abstract "RESUMEL'utilisation de composites a matrice polymere (CMPs) s'est grandement repandue dans l'industrie du transport au cours des dernieres decennies. Ces materiaux offrent un rapport rigidite/masse superieur a celui des metaux et permettent d'alleger les vehicules et d'augmenter leur efficacite energetique. Pour ces raisons, les principales compagnies aeronautiques et aerospatiales ont commence a utiliser les CMPs dans des applications structurelles telles que les ailes, le fuselage et meme les moteurs d'avion.L'utilisation des CMPs dans des applications telles que les moteurs d'avions necessitent des materiaux capable de resister a des conditions d'utilisation extremes, entre autres des temperatures elevees, ainsi que des chargements mecaniques importants et un environnement oxydant. Dans de telles conditions, la matrice polymere est susceptible de posseder un comportement viscoelastique dependant de son chargement et de la temperature. De plus, a proximite des moteurs, la combinaison des hautes temperatures et de l'environnement accelere les vieillissements physiques et chimiques. Tous ces parametres doivent etre pris en consideration afin de pouvoir predire le comportement du materiau tout au long de son utilisation.Le principal objectif de cette these etait d'etudier le comportement viscoelastique d'une telle matrice et de developper une loi de comportement capable de tenir compte de tout type de conditions d'utilisation. Ce modele devait ensuite etre implemente dans un logiciel commercial d'elements finis tel que ABAQUS ou ANSYS.Premierement, le vieillissement chimique de la matrice a la temperature d'utilisation a ete etudie. A cette fin, une analyse thermogravimetrique fut realisee sur des echantillons de poudre dans une atmosphere d'air. Deux types de tests furent menes a bien : i) des tests cinetiques durant lesquels la poudre est chauffee a un rythme constant jusqu'a sa sublimation complete ; ii) des test isothermes durant lesquels les echantillons sont maintenus a une temperature unique pendant 24 heures. Le premier type de tests fut utilise pour developper un modele de degradation reproduisant avec grande precision les resultats experimentaux. La prediction des resultats des essais isothermes a rencontre beaucoup moins de succes, en particulier pour les basses temperatures. A ces temperatures, une phase d'oxydation precede la phase de degradation chimique. Or le modele developpe est incapable de representer ce phenomene. D'autres essais de degradation isothermes furent conduits sur des echantillons de traction plutot que sur de la poudre. Ces tests furent menes a la temperature de service, pour des periodes de temps bien superieures. Les masses, volumes et proprietes mecaniques furent mesures apres 1, 4, 9 et 17 mois. Les resultats ont montre qu'apres 17 mois, la matrice avait perdue pres de 5% de sa masse et jusqu'a 19%, 30% et 10% de son module d'Young, contrainte a la rupture et deformation a la rupture, respectivement.La seconde etape a consiste a etudier le comportement viscoelastique de la matrice dans diverses conditions d'utilisation afin de developper une loi de comportement. Cette loi fut developpee a partir du travail accompli par Schapery en 1964, base sur les principes de la Thermodynamique des Procedes Irreversibles. L'avantage principal des lois de comportement de type Schapery reside dans la prise en charge des effets des differents parametres, tels que les contraintes, la temperature ou le vieillissement physique, par des fonctions nonlineaires explicites. Des echantillons de traction du materiau furent testes a la temperature de service.----------ABSTRACTThe use of Polymer Matrix Composite Materials (PMCMs) has steadily increased in the transport industry over the past few decades. These materials offer a higher stiffness/mass ratio than their metallic counterparts and therefore allow for a reduction in the mass of the vehicle, which leads to an increased energy efficiency. Leading aerospace and aeronautics companies progressively using PMCMs for structural applications, such as wings, fuselage and more recently, aircraft engines.Use of PMCMs in aircraft engines requires materials able to withstand extreme service conditions, such as elevated temperatures, high mechanical loadings and an oxidative environment. In such an environment, the polymer matrix is likely to exhibit a viscoelastic behaviour dependent on the mechanical loading and temperature. In addition, the combined effects of elevated temperature and the environment near the engines are likely to increase physical as well as chemical ageing. These various parameters need to be taken into consideration for the designer to be able to predict the material behaviour over the service life of the components. The main objective of this thesis was to study the viscoelastic behaviour of a high temperature polyimide matrix and develop a constitutive theory able to predict the material behaviour for every of service condition. Then, the model had to have to be implemented into commercially available finite-element software such as ABAQUS or ANSYS.Firstly, chemical aging of the material at service temperature was studied. To that end, a thermogravimetric analysis of the matrix was conducted on powder samples in air atmosphere. Two kinds of tests were performed: i) kinetic tests in which powder samples were heated at a constant rate until complete sublimation; ii) isothermal tests in which the samples were maintained at a constant temperature for 24 hours. The first tests were used to develop a degradation model, leading to an excellent _t of the experimental data. Then, the model was used to predict the isothermal data but which much less success, particularly for the lowest temperatures. At those temperatures, the chemical degradation was preceded by an oxidation phase which the model was not designed to predict. Other isothermal degradation tests were also performed on tensile tests samples instead of powders. Those tests were conducted at service temperature for a much longer period of time. The samples masses, volume and tensile properties were recorded after 1, 4, 9 and 17 months. The results of those tests showed that after 17 months, the matrix lost about 5% of its mass and volume and as much as 19%, 30% and 10% of its Young's modulus, stress and strain at break, respectively.The second step consisted in studying the viscoelastic behaviour of the matrix under various conditions and develop a constitutive theory to model its mechanical behaviour. That theory was developed using the framework laid out by Schapery in 1964, using the Thermodynamics of Irreversible Processes. The main advantage of Schapery-type constitutive theories is that the effects of various parameters such as stresses, temperature and physical ageing can be taken into account by using user-defined explicit nonlinearizing functions. Tensile samples of the material were tested at service temperature using strain gages rosettes in order to study the matrix 3D behaviour. It was found that the Poisson's ratio was time-independent, meaning that its retardation times spectrum was the same as the compliance function." @default.
- W2183278137 created "2016-06-24" @default.
- W2183278137 creator A5031645840 @default.
- W2183278137 date "2014-10-01" @default.
- W2183278137 modified "2023-09-27" @default.
- W2183278137 title "Modeling of the viscoelastic behavior of a polyimide matrix at elevated temperature" @default.
- W2183278137 cites W1498359053 @default.
- W2183278137 cites W1528387358 @default.
- W2183278137 cites W18991032 @default.
- W2183278137 cites W1963933416 @default.
- W2183278137 cites W1968084908 @default.
- W2183278137 cites W1979295543 @default.
- W2183278137 cites W1980769083 @default.
- W2183278137 cites W1981190699 @default.
- W2183278137 cites W1981316754 @default.
- W2183278137 cites W1982200980 @default.
- W2183278137 cites W1984439308 @default.
- W2183278137 cites W1987126452 @default.
- W2183278137 cites W1989367982 @default.
- W2183278137 cites W1990585893 @default.
- W2183278137 cites W1991111560 @default.
- W2183278137 cites W1992880608 @default.
- W2183278137 cites W1993935834 @default.
- W2183278137 cites W1994158126 @default.
- W2183278137 cites W2000533763 @default.
- W2183278137 cites W2002145626 @default.
- W2183278137 cites W2004088270 @default.
- W2183278137 cites W2006041920 @default.
- W2183278137 cites W2008092873 @default.
- W2183278137 cites W2008854263 @default.
- W2183278137 cites W2015204243 @default.
- W2183278137 cites W2015419827 @default.
- W2183278137 cites W2015901728 @default.
- W2183278137 cites W2016810640 @default.
- W2183278137 cites W2017035833 @default.
- W2183278137 cites W2019697464 @default.
- W2183278137 cites W2021618618 @default.
- W2183278137 cites W2028539296 @default.
- W2183278137 cites W2033078802 @default.
- W2183278137 cites W2035264167 @default.
- W2183278137 cites W2036405954 @default.
- W2183278137 cites W2036687885 @default.
- W2183278137 cites W2039818290 @default.
- W2183278137 cites W2044423564 @default.
- W2183278137 cites W2045470730 @default.
- W2183278137 cites W2047066819 @default.
- W2183278137 cites W2047855321 @default.
- W2183278137 cites W2048055501 @default.
- W2183278137 cites W2053970653 @default.
- W2183278137 cites W2054970930 @default.
- W2183278137 cites W2057769605 @default.
- W2183278137 cites W2059801266 @default.
- W2183278137 cites W2060297990 @default.
- W2183278137 cites W2060583677 @default.
- W2183278137 cites W2060819063 @default.
- W2183278137 cites W2063431185 @default.
- W2183278137 cites W2065082721 @default.
- W2183278137 cites W2065531048 @default.
- W2183278137 cites W2065815963 @default.
- W2183278137 cites W2071135841 @default.
- W2183278137 cites W2077082894 @default.
- W2183278137 cites W2079442650 @default.
- W2183278137 cites W2081837873 @default.
- W2183278137 cites W2082568554 @default.
- W2183278137 cites W2083882036 @default.
- W2183278137 cites W2085119483 @default.
- W2183278137 cites W2085521187 @default.
- W2183278137 cites W2092057639 @default.
- W2183278137 cites W2106885197 @default.
- W2183278137 cites W2125498780 @default.
- W2183278137 cites W2129035541 @default.
- W2183278137 cites W2144113535 @default.
- W2183278137 cites W2148109158 @default.
- W2183278137 cites W2150587136 @default.
- W2183278137 cites W2156370397 @default.
- W2183278137 cites W2159377900 @default.
- W2183278137 cites W2163972227 @default.
- W2183278137 cites W2168514266 @default.
- W2183278137 cites W2170786910 @default.
- W2183278137 cites W29133407 @default.
- W2183278137 cites W380160900 @default.
- W2183278137 cites W52594435 @default.
- W2183278137 hasPublicationYear "2014" @default.
- W2183278137 type Work @default.
- W2183278137 sameAs 2183278137 @default.
- W2183278137 citedByCount "0" @default.
- W2183278137 crossrefType "journal-article" @default.
- W2183278137 hasAuthorship W2183278137A5031645840 @default.
- W2183278137 hasConcept C106487976 @default.
- W2183278137 hasConcept C159985019 @default.
- W2183278137 hasConcept C186541917 @default.
- W2183278137 hasConcept C192562407 @default.
- W2183278137 hasConcept C2779227376 @default.
- W2183278137 hasConcept C2780965675 @default.
- W2183278137 hasConceptScore W2183278137C106487976 @default.
- W2183278137 hasConceptScore W2183278137C159985019 @default.
- W2183278137 hasConceptScore W2183278137C186541917 @default.
- W2183278137 hasConceptScore W2183278137C192562407 @default.
- W2183278137 hasConceptScore W2183278137C2779227376 @default.
- W2183278137 hasConceptScore W2183278137C2780965675 @default.