Matches in SemOpenAlex for { <https://semopenalex.org/work/W2183600102> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2183600102 abstract "During the last few years the numbers of vehicles travelling in our roads have increased, increasing the driver’s attention requirements. The instant effect of this is the dramatic increase in the amount of accidents occurring on the road. reduce the number of road risks, vehicular networks will play an increasing role in the Intelligent Transportation Systems (ITS) area. Most ITS applications, such as road safety, feet management, and navigation, will rely on data exchanged between the vehicle and the roadside infrastructure (V2I), or even directly between vehicles (V2V). The integration of sensoring capabilities in vehicles along with peer to peer mobile communication among vehicles, significant in terms of safety. In order to maximize the benefits of using communication systems between vehicles, the infrastructure should be supported by a intelligent system capable of estimating the severity of accidents, and automatically notifying the actions required, thereby reducing the time needed to rescue injured passengers. Many of the manual decisions taken nowadays by emergency services are based on incomplete or inaccurate data, which may be replaced by automatic systems that adapt to the specific characteristics of each accident. A preliminary assessment of the severity of the accident will help emergency services to adapt the human and material resources to the conditions of the accident, with the consequent assistance quality improvement. In this paper, we take advantage of the use of vehicular networks to collect detailed information about road accidents that is then used to estimate the severity of the collision. We propose estimation based on data mining classification algorithms, trained using historical data about previous accidents. Our proposal does not focus on directly reducing the number of accidents, but on improving post- collision assistance." @default.
- W2183600102 created "2016-06-24" @default.
- W2183600102 creator A5016224055 @default.
- W2183600102 date "2014-01-01" @default.
- W2183600102 modified "2023-09-27" @default.
- W2183600102 title "IJESRTJOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Accident Detection and Notification System." @default.
- W2183600102 hasPublicationYear "2014" @default.
- W2183600102 type Work @default.
- W2183600102 sameAs 2183600102 @default.
- W2183600102 citedByCount "0" @default.
- W2183600102 crossrefType "journal-article" @default.
- W2183600102 hasAuthorship W2183600102A5016224055 @default.
- W2183600102 hasConcept C111472728 @default.
- W2183600102 hasConcept C112930515 @default.
- W2183600102 hasConcept C127413603 @default.
- W2183600102 hasConcept C138885662 @default.
- W2183600102 hasConcept C144133560 @default.
- W2183600102 hasConcept C22212356 @default.
- W2183600102 hasConcept C2779530757 @default.
- W2183600102 hasConcept C2780289543 @default.
- W2183600102 hasConcept C38652104 @default.
- W2183600102 hasConcept C41008148 @default.
- W2183600102 hasConcept C47796450 @default.
- W2183600102 hasConceptScore W2183600102C111472728 @default.
- W2183600102 hasConceptScore W2183600102C112930515 @default.
- W2183600102 hasConceptScore W2183600102C127413603 @default.
- W2183600102 hasConceptScore W2183600102C138885662 @default.
- W2183600102 hasConceptScore W2183600102C144133560 @default.
- W2183600102 hasConceptScore W2183600102C22212356 @default.
- W2183600102 hasConceptScore W2183600102C2779530757 @default.
- W2183600102 hasConceptScore W2183600102C2780289543 @default.
- W2183600102 hasConceptScore W2183600102C38652104 @default.
- W2183600102 hasConceptScore W2183600102C41008148 @default.
- W2183600102 hasConceptScore W2183600102C47796450 @default.
- W2183600102 hasLocation W21836001021 @default.
- W2183600102 hasOpenAccess W2183600102 @default.
- W2183600102 hasPrimaryLocation W21836001021 @default.
- W2183600102 hasRelatedWork W1654862677 @default.
- W2183600102 hasRelatedWork W2017201461 @default.
- W2183600102 hasRelatedWork W2055971619 @default.
- W2183600102 hasRelatedWork W2139687973 @default.
- W2183600102 hasRelatedWork W2397342094 @default.
- W2183600102 hasRelatedWork W2442800338 @default.
- W2183600102 hasRelatedWork W2501271775 @default.
- W2183600102 hasRelatedWork W2769788410 @default.
- W2183600102 hasRelatedWork W2792871751 @default.
- W2183600102 hasRelatedWork W2805007042 @default.
- W2183600102 hasRelatedWork W2886953335 @default.
- W2183600102 hasRelatedWork W2942940788 @default.
- W2183600102 hasRelatedWork W2945034950 @default.
- W2183600102 hasRelatedWork W2993467506 @default.
- W2183600102 hasRelatedWork W3038895049 @default.
- W2183600102 hasRelatedWork W3110545959 @default.
- W2183600102 hasRelatedWork W3133222927 @default.
- W2183600102 hasRelatedWork W3168667848 @default.
- W2183600102 hasRelatedWork W3191995480 @default.
- W2183600102 hasRelatedWork W751190602 @default.
- W2183600102 isParatext "false" @default.
- W2183600102 isRetracted "false" @default.
- W2183600102 magId "2183600102" @default.
- W2183600102 workType "article" @default.