Matches in SemOpenAlex for { <https://semopenalex.org/work/W2183610238> ?p ?o ?g. }
- W2183610238 abstract "Noise present in an environment has significant impacts on a quantum system affecting properties like coherence, entanglement and other metrological features of a quantum state. In this dissertation, we address the effects of different types of noise that are present in a communication channel (or medium) and an interferometric setup, and analyze their effects in the contexts of preserving coherence and entanglement, phase sensitivity, and limits on rate of communication through noisy channels. We first consider quantum optical phase estimation in quantum metrology when phase fluctuations are introduced in the system by its interaction with a noisy environment. By considering path-entangled dual-mode photon Fock states in a Mach-Zehnder optical interferometric configuration, we show that such phase fluctuations affect phase sensitivity and visibility by adding noise to the phase to be estimated. We also demonstrate that the optimal detection strategy for estimating a phase in the presence of such phase noise is provided by the parity detection scheme. We then investigate the random birefringent noise present in an optical fiber affecting the coherence properties of a single photon polarization qubit propagating through it. We show that a simple but effective control technique, called dynamical decoupling, can be used to suppress the effects of the dephasing noise, thereby preserving its ability to carry the encoded quantum information in a long-distance optical fiber communication system. Optical amplifiers and attenuators can also add noise to an entangled quantum system, deteriorating the non-classical properties of the state. We show this by considering a two-mode squeezed vacuum state, which is a Gaussian entangled state, propagating through a noisy medium, and characterizing the loss of entanglement in the covariance matrix and the symplectic formalism for this state. Finally, we discuss limits on the rate of communication in the context of sending messages through noisy optical quantum communication channels. In particular, we prove that a strong converse theorem holds under a maximum photon number constraint for these channels, guaranteeing that the success probability in decoding the message vanishes in the asymptotic limit for the rate exceeding the capacity of the channels." @default.
- W2183610238 created "2016-06-24" @default.
- W2183610238 creator A5077969159 @default.
- W2183610238 date "2022-06-10" @default.
- W2183610238 modified "2023-10-06" @default.
- W2183610238 title "Topics in Quantum Metrology, Control, and Communications" @default.
- W2183610238 cites W110285710 @default.
- W2183610238 cites W1514675880 @default.
- W2183610238 cites W1534782928 @default.
- W2183610238 cites W1550805127 @default.
- W2183610238 cites W1879994454 @default.
- W2183610238 cites W1963736202 @default.
- W2183610238 cites W1965641466 @default.
- W2183610238 cites W1966153657 @default.
- W2183610238 cites W1967919151 @default.
- W2183610238 cites W1969955524 @default.
- W2183610238 cites W1970948459 @default.
- W2183610238 cites W1971851949 @default.
- W2183610238 cites W1972355712 @default.
- W2183610238 cites W1973393954 @default.
- W2183610238 cites W1974333095 @default.
- W2183610238 cites W1974793957 @default.
- W2183610238 cites W1978910765 @default.
- W2183610238 cites W1979369481 @default.
- W2183610238 cites W1979399579 @default.
- W2183610238 cites W1980473219 @default.
- W2183610238 cites W1983727080 @default.
- W2183610238 cites W1984004232 @default.
- W2183610238 cites W1986656023 @default.
- W2183610238 cites W1987279116 @default.
- W2183610238 cites W1988472109 @default.
- W2183610238 cites W1988952566 @default.
- W2183610238 cites W1993122650 @default.
- W2183610238 cites W1995875735 @default.
- W2183610238 cites W1996322137 @default.
- W2183610238 cites W1999664967 @default.
- W2183610238 cites W1999706070 @default.
- W2183610238 cites W2000446566 @default.
- W2183610238 cites W2001619599 @default.
- W2183610238 cites W2002372750 @default.
- W2183610238 cites W2003132673 @default.
- W2183610238 cites W2004339996 @default.
- W2183610238 cites W2004341736 @default.
- W2183610238 cites W2007948277 @default.
- W2183610238 cites W2008556301 @default.
- W2183610238 cites W2012294043 @default.
- W2183610238 cites W2012592597 @default.
- W2183610238 cites W2012875262 @default.
- W2183610238 cites W2016601861 @default.
- W2183610238 cites W2016870158 @default.
- W2183610238 cites W2017293193 @default.
- W2183610238 cites W2017964195 @default.
- W2183610238 cites W2018805303 @default.
- W2183610238 cites W2018995230 @default.
- W2183610238 cites W2019496468 @default.
- W2183610238 cites W2023564955 @default.
- W2183610238 cites W2024663917 @default.
- W2183610238 cites W2027245161 @default.
- W2183610238 cites W2027270183 @default.
- W2183610238 cites W2030960102 @default.
- W2183610238 cites W2033909248 @default.
- W2183610238 cites W2035480518 @default.
- W2183610238 cites W2037719546 @default.
- W2183610238 cites W2039019529 @default.
- W2183610238 cites W2039645529 @default.
- W2183610238 cites W2040743796 @default.
- W2183610238 cites W2042474962 @default.
- W2183610238 cites W2044528981 @default.
- W2183610238 cites W2046158380 @default.
- W2183610238 cites W2051618454 @default.
- W2183610238 cites W2051869207 @default.
- W2183610238 cites W2052547819 @default.
- W2183610238 cites W2054043419 @default.
- W2183610238 cites W2055598707 @default.
- W2183610238 cites W2058110312 @default.
- W2183610238 cites W2062648371 @default.
- W2183610238 cites W2064548777 @default.
- W2183610238 cites W2065240408 @default.
- W2183610238 cites W2065432721 @default.
- W2183610238 cites W2067722023 @default.
- W2183610238 cites W2067976138 @default.
- W2183610238 cites W2070735470 @default.
- W2183610238 cites W2071764857 @default.
- W2183610238 cites W2074384947 @default.
- W2183610238 cites W2075425330 @default.
- W2183610238 cites W2075989993 @default.
- W2183610238 cites W2076283593 @default.
- W2183610238 cites W2076954515 @default.
- W2183610238 cites W2080002278 @default.
- W2183610238 cites W2083423624 @default.
- W2183610238 cites W2085015781 @default.
- W2183610238 cites W2085050549 @default.
- W2183610238 cites W2085506438 @default.
- W2183610238 cites W2085733281 @default.
- W2183610238 cites W2088396519 @default.
- W2183610238 cites W2090601763 @default.
- W2183610238 cites W2090644485 @default.
- W2183610238 cites W2090775504 @default.
- W2183610238 cites W2092855111 @default.
- W2183610238 cites W2092884150 @default.