Matches in SemOpenAlex for { <https://semopenalex.org/work/W2183616920> ?p ?o ?g. }
- W2183616920 endingPage "22" @default.
- W2183616920 startingPage "3" @default.
- W2183616920 abstract "Neural networks are an artificial intelligence method for modeling complex target functions. For certain types of problems, such as learning to interpret complex real-world sensor data, artificial neural networks (ANNs) are among the most effective learning methods. During the last decade, they have been widely applied to the domain of financial time series prediction, and their importance in this field is growing. This paper aims to analyze neural networks for financial time series forecasting, specifically, their ability to predict future trends of North American, European, and Brazilian stock markets. Their accuracy is compared to that of a traditional forecasting method, generalized autoregressive conditional heteroskedasticity (GARCH). Furthermore, the best choice of network design is examined for each data sample. This paper concludes that ANNs do indeed have the capability to forecast the stock markets studied, and, if properly trained, robustness can be improved, depending on the network structure. In addition, the Ashley–Granger–Schmalancee and Morgan–Granger–Newbold tests indicate that ANNs outperform GARCH models in statistical terms." @default.
- W2183616920 created "2016-06-24" @default.
- W2183616920 creator A5049085341 @default.
- W2183616920 creator A5070671093 @default.
- W2183616920 date "2010-01-01" @default.
- W2183616920 modified "2023-10-14" @default.
- W2183616920 title "Neural Networks Applied to Stock Market Forecasting: An Empirical Analysis" @default.
- W2183616920 cites W1490095204 @default.
- W2183616920 cites W1491654721 @default.
- W2183616920 cites W1515719066 @default.
- W2183616920 cites W1533379640 @default.
- W2183616920 cites W1533618852 @default.
- W2183616920 cites W1537680108 @default.
- W2183616920 cites W1547181794 @default.
- W2183616920 cites W1572401739 @default.
- W2183616920 cites W1575881144 @default.
- W2183616920 cites W1586335931 @default.
- W2183616920 cites W1587239851 @default.
- W2183616920 cites W1595740553 @default.
- W2183616920 cites W160122124 @default.
- W2183616920 cites W1737706948 @default.
- W2183616920 cites W1968171917 @default.
- W2183616920 cites W1977627101 @default.
- W2183616920 cites W1981810731 @default.
- W2183616920 cites W1984367183 @default.
- W2183616920 cites W1995319408 @default.
- W2183616920 cites W1995834279 @default.
- W2183616920 cites W1996984227 @default.
- W2183616920 cites W1999996900 @default.
- W2183616920 cites W2005346797 @default.
- W2183616920 cites W2010997253 @default.
- W2183616920 cites W2011417860 @default.
- W2183616920 cites W2021335888 @default.
- W2183616920 cites W2024056468 @default.
- W2183616920 cites W2024850745 @default.
- W2183616920 cites W2027182449 @default.
- W2183616920 cites W2029803196 @default.
- W2183616920 cites W2032170121 @default.
- W2183616920 cites W2043626568 @default.
- W2183616920 cites W2049239673 @default.
- W2183616920 cites W2053865013 @default.
- W2183616920 cites W2054249884 @default.
- W2183616920 cites W2054349855 @default.
- W2183616920 cites W2066431932 @default.
- W2183616920 cites W2067057029 @default.
- W2183616920 cites W2078309414 @default.
- W2183616920 cites W2080210651 @default.
- W2183616920 cites W2082021174 @default.
- W2183616920 cites W2083036265 @default.
- W2183616920 cites W2090637028 @default.
- W2183616920 cites W2095328660 @default.
- W2183616920 cites W2101420345 @default.
- W2183616920 cites W2105969659 @default.
- W2183616920 cites W2124776405 @default.
- W2183616920 cites W2125341799 @default.
- W2183616920 cites W2131894804 @default.
- W2183616920 cites W2133671888 @default.
- W2183616920 cites W2137983211 @default.
- W2183616920 cites W2139250112 @default.
- W2183616920 cites W2140971281 @default.
- W2183616920 cites W2152145014 @default.
- W2183616920 cites W2165758113 @default.
- W2183616920 cites W2168175751 @default.
- W2183616920 cites W2307891255 @default.
- W2183616920 cites W2316706700 @default.
- W2183616920 cites W2741302738 @default.
- W2183616920 cites W2799114752 @default.
- W2183616920 cites W2973774984 @default.
- W2183616920 cites W3123598380 @default.
- W2183616920 cites W3124458746 @default.
- W2183616920 cites W3124743026 @default.
- W2183616920 cites W3125696988 @default.
- W2183616920 cites W3207342693 @default.
- W2183616920 cites W2114001875 @default.
- W2183616920 cites W2137660645 @default.
- W2183616920 doi "https://doi.org/10.21528/lnlm-vol8-no1-art1" @default.
- W2183616920 hasPublicationYear "2010" @default.
- W2183616920 type Work @default.
- W2183616920 sameAs 2183616920 @default.
- W2183616920 citedByCount "11" @default.
- W2183616920 countsByYear W21836169202012 @default.
- W2183616920 countsByYear W21836169202014 @default.
- W2183616920 countsByYear W21836169202015 @default.
- W2183616920 countsByYear W21836169202016 @default.
- W2183616920 countsByYear W21836169202019 @default.
- W2183616920 countsByYear W21836169202020 @default.
- W2183616920 countsByYear W21836169202021 @default.
- W2183616920 countsByYear W21836169202023 @default.
- W2183616920 crossrefType "journal-article" @default.
- W2183616920 hasAuthorship W2183616920A5049085341 @default.
- W2183616920 hasAuthorship W2183616920A5070671093 @default.
- W2183616920 hasBestOaLocation W21836169201 @default.
- W2183616920 hasConcept C149782125 @default.
- W2183616920 hasConcept C154945302 @default.
- W2183616920 hasConcept C162324750 @default.
- W2183616920 hasConcept C166957645 @default.
- W2183616920 hasConcept C204036174 @default.
- W2183616920 hasConcept C205649164 @default.