Matches in SemOpenAlex for { <https://semopenalex.org/work/W2183664916> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2183664916 abstract "Knowing that electrical load is a non storable resource; short term electric load forecasting becomes an important tool to optimise dispatching of electrical load in regular system planning. Several techniques have been used to accomplish this task, from traditional linear regression and Box- Jenkins to artificial intelligence approaches such as Artificial Neural Networks (ANN). This work presents a comparative study of serial and parallel ANN approaches for forecasting 168 hours ahead using a multiple linear regression model as a benchmark for comparison. The results obtained by the latter method, are compared with the ANN serial and parallel developed approaches. These models were trained solemnly on past load consumption data, given by the Algerian national electricity company. This results in Nonlinear Autoregressive Models (NAR), however once the approach validity is proven, the addition of exogenous inputs can only improve model results." @default.
- W2183664916 created "2016-06-24" @default.
- W2183664916 creator A5027431080 @default.
- W2183664916 creator A5051849366 @default.
- W2183664916 creator A5057585342 @default.
- W2183664916 date "2015-04-12" @default.
- W2183664916 modified "2023-09-26" @default.
- W2183664916 title "Comparison of serial and parallel approaches using artificial neural networks for Algerian short term load forecasting" @default.
- W2183664916 cites W1973015086 @default.
- W2183664916 cites W2005683380 @default.
- W2183664916 cites W2033224725 @default.
- W2183664916 cites W2065350746 @default.
- W2183664916 cites W2071151783 @default.
- W2183664916 cites W2120585179 @default.
- W2183664916 cites W2122671960 @default.
- W2183664916 cites W2139073438 @default.
- W2183664916 cites W2151767444 @default.
- W2183664916 cites W2157427603 @default.
- W2183664916 cites W2158876086 @default.
- W2183664916 cites W2764540329 @default.
- W2183664916 doi "https://doi.org/10.15224/978-1-63248-056-9-23" @default.
- W2183664916 hasPublicationYear "2015" @default.
- W2183664916 type Work @default.
- W2183664916 sameAs 2183664916 @default.
- W2183664916 citedByCount "1" @default.
- W2183664916 countsByYear W21836649162016 @default.
- W2183664916 crossrefType "proceedings-article" @default.
- W2183664916 hasAuthorship W2183664916A5027431080 @default.
- W2183664916 hasAuthorship W2183664916A5051849366 @default.
- W2183664916 hasAuthorship W2183664916A5057585342 @default.
- W2183664916 hasConcept C119599485 @default.
- W2183664916 hasConcept C119857082 @default.
- W2183664916 hasConcept C121332964 @default.
- W2183664916 hasConcept C127413603 @default.
- W2183664916 hasConcept C13280743 @default.
- W2183664916 hasConcept C149782125 @default.
- W2183664916 hasConcept C154945302 @default.
- W2183664916 hasConcept C159877910 @default.
- W2183664916 hasConcept C165801399 @default.
- W2183664916 hasConcept C185798385 @default.
- W2183664916 hasConcept C201995342 @default.
- W2183664916 hasConcept C205649164 @default.
- W2183664916 hasConcept C2780451532 @default.
- W2183664916 hasConcept C33923547 @default.
- W2183664916 hasConcept C41008148 @default.
- W2183664916 hasConcept C48921125 @default.
- W2183664916 hasConcept C50644808 @default.
- W2183664916 hasConcept C61797465 @default.
- W2183664916 hasConcept C62520636 @default.
- W2183664916 hasConcept C77715397 @default.
- W2183664916 hasConceptScore W2183664916C119599485 @default.
- W2183664916 hasConceptScore W2183664916C119857082 @default.
- W2183664916 hasConceptScore W2183664916C121332964 @default.
- W2183664916 hasConceptScore W2183664916C127413603 @default.
- W2183664916 hasConceptScore W2183664916C13280743 @default.
- W2183664916 hasConceptScore W2183664916C149782125 @default.
- W2183664916 hasConceptScore W2183664916C154945302 @default.
- W2183664916 hasConceptScore W2183664916C159877910 @default.
- W2183664916 hasConceptScore W2183664916C165801399 @default.
- W2183664916 hasConceptScore W2183664916C185798385 @default.
- W2183664916 hasConceptScore W2183664916C201995342 @default.
- W2183664916 hasConceptScore W2183664916C205649164 @default.
- W2183664916 hasConceptScore W2183664916C2780451532 @default.
- W2183664916 hasConceptScore W2183664916C33923547 @default.
- W2183664916 hasConceptScore W2183664916C41008148 @default.
- W2183664916 hasConceptScore W2183664916C48921125 @default.
- W2183664916 hasConceptScore W2183664916C50644808 @default.
- W2183664916 hasConceptScore W2183664916C61797465 @default.
- W2183664916 hasConceptScore W2183664916C62520636 @default.
- W2183664916 hasConceptScore W2183664916C77715397 @default.
- W2183664916 hasLocation W21836649161 @default.
- W2183664916 hasOpenAccess W2183664916 @default.
- W2183664916 hasPrimaryLocation W21836649161 @default.
- W2183664916 hasRelatedWork W1482522651 @default.
- W2183664916 hasRelatedWork W1730564843 @default.
- W2183664916 hasRelatedWork W1802802515 @default.
- W2183664916 hasRelatedWork W1987143237 @default.
- W2183664916 hasRelatedWork W2055408547 @default.
- W2183664916 hasRelatedWork W2057044787 @default.
- W2183664916 hasRelatedWork W2103080191 @default.
- W2183664916 hasRelatedWork W2115510183 @default.
- W2183664916 hasRelatedWork W2162641381 @default.
- W2183664916 hasRelatedWork W2333118205 @default.
- W2183664916 hasRelatedWork W2338117734 @default.
- W2183664916 hasRelatedWork W2377005672 @default.
- W2183664916 hasRelatedWork W2474403319 @default.
- W2183664916 hasRelatedWork W2520504876 @default.
- W2183664916 hasRelatedWork W2588083628 @default.
- W2183664916 hasRelatedWork W2797162213 @default.
- W2183664916 hasRelatedWork W2887466867 @default.
- W2183664916 hasRelatedWork W2892965516 @default.
- W2183664916 hasRelatedWork W2974707407 @default.
- W2183664916 hasRelatedWork W3111758896 @default.
- W2183664916 isParatext "false" @default.
- W2183664916 isRetracted "false" @default.
- W2183664916 magId "2183664916" @default.
- W2183664916 workType "article" @default.