Matches in SemOpenAlex for { <https://semopenalex.org/work/W2183679846> ?p ?o ?g. }
- W2183679846 abstract "The solution to partial differential equations generally requires approximations that result in numerical error in the final solution. Of the different types of numerical error in a solution, discretization error is the largest and most difficult error to estimate. In addition, the accuracy of the discretization error estimates relies on the solution (or multiple solutions used in the estimate) being in the asymptotic range. The asymptotic range is used to describe the convergence of a solution, where an asymptotic solution approaches the exact solution at a rate proportional to the change in mesh spacing to an exponent equal to the formal order of accuracy. A non-asymptotic solution can result in unpredictable convergence rates introducing uncertainty in discretization error estimates. To account for the additional uncertainty, various discretization uncertainty estimators have been developed. The goal of this work is to evaluation discretization error and discretization uncertainty estimators based on Richardson extrapolation for computational fluid dynamics problems. In order to evaluate the estimators, the exact solution should be known. A select set of solutions to the 2D Euler equations with known exact solutions are used to evaluate the estimators. Since exact solutions are only available for trivial cases, two applications are also used to evaluate the estimators which are solutions to the Navier-Stokes equations: a laminar flat plate and a turbulent flat plate using the turbulence model. Since the exact solutions to the Navier-Stokes equations for these cases are unknown, numerical benchmarks are created which are solutions on significantly finer meshes than the solutions used to estimate the discretization error and uncertainty. Metrics are developed to evaluate the accuracy of the error and uncertainty estimates and to study the behavior of each estimator when the solutions are in, near, and far from the asymptotic range. Based on the results, general recommendations are made for the implementation of the error and uncertainty estimators. In addition, a new uncertainty estimator is proposed with the goal of combining the favorable attributes of the discretization error and uncertainty estimators evaluated. The new estimator is evaluated using numerical solutions which were not used for development and shows improved accuracy over the evaluated estimators." @default.
- W2183679846 created "2016-06-24" @default.
- W2183679846 creator A5056947062 @default.
- W2183679846 date "2012-02-27" @default.
- W2183679846 modified "2023-09-27" @default.
- W2183679846 title "Extrapolation-based Discretization Error and Uncertainty Estimation in Computational Fluid Dynamics" @default.
- W2183679846 cites W1583872979 @default.
- W2183679846 cites W1607663648 @default.
- W2183679846 cites W1673756544 @default.
- W2183679846 cites W1974961323 @default.
- W2183679846 cites W1980266375 @default.
- W2183679846 cites W1995404822 @default.
- W2183679846 cites W1996430385 @default.
- W2183679846 cites W2005606680 @default.
- W2183679846 cites W2013875068 @default.
- W2183679846 cites W2014289408 @default.
- W2183679846 cites W2015246703 @default.
- W2183679846 cites W2021658553 @default.
- W2183679846 cites W2025669459 @default.
- W2183679846 cites W2038817846 @default.
- W2183679846 cites W2044161732 @default.
- W2183679846 cites W2049672829 @default.
- W2183679846 cites W2068056613 @default.
- W2183679846 cites W2068073951 @default.
- W2183679846 cites W2077084809 @default.
- W2183679846 cites W2080202186 @default.
- W2183679846 cites W2085428945 @default.
- W2183679846 cites W2098920641 @default.
- W2183679846 cites W2112548197 @default.
- W2183679846 cites W2122602456 @default.
- W2183679846 cites W2127931614 @default.
- W2183679846 cites W2129824613 @default.
- W2183679846 cites W2149493559 @default.
- W2183679846 cites W2149643378 @default.
- W2183679846 cites W2149952179 @default.
- W2183679846 cites W2169878753 @default.
- W2183679846 cites W2187573251 @default.
- W2183679846 cites W2317959417 @default.
- W2183679846 cites W2325572450 @default.
- W2183679846 cites W2466218146 @default.
- W2183679846 cites W2494779131 @default.
- W2183679846 cites W2758001635 @default.
- W2183679846 cites W3036479320 @default.
- W2183679846 cites W768639568 @default.
- W2183679846 hasPublicationYear "2012" @default.
- W2183679846 type Work @default.
- W2183679846 sameAs 2183679846 @default.
- W2183679846 citedByCount "1" @default.
- W2183679846 countsByYear W21836798462017 @default.
- W2183679846 crossrefType "dissertation" @default.
- W2183679846 hasAuthorship W2183679846A5056947062 @default.
- W2183679846 hasConcept C102893441 @default.
- W2183679846 hasConcept C105795698 @default.
- W2183679846 hasConcept C126255220 @default.
- W2183679846 hasConcept C127162648 @default.
- W2183679846 hasConcept C127413603 @default.
- W2183679846 hasConcept C132459708 @default.
- W2183679846 hasConcept C134306372 @default.
- W2183679846 hasConcept C146978453 @default.
- W2183679846 hasConcept C162324750 @default.
- W2183679846 hasConcept C185429906 @default.
- W2183679846 hasConcept C2777303404 @default.
- W2183679846 hasConcept C2781278361 @default.
- W2183679846 hasConcept C28826006 @default.
- W2183679846 hasConcept C31258907 @default.
- W2183679846 hasConcept C33923547 @default.
- W2183679846 hasConcept C39177556 @default.
- W2183679846 hasConcept C41008148 @default.
- W2183679846 hasConcept C50522688 @default.
- W2183679846 hasConcept C57869625 @default.
- W2183679846 hasConcept C73000952 @default.
- W2183679846 hasConcept C84655787 @default.
- W2183679846 hasConcept C93779851 @default.
- W2183679846 hasConcept C97826883 @default.
- W2183679846 hasConceptScore W2183679846C102893441 @default.
- W2183679846 hasConceptScore W2183679846C105795698 @default.
- W2183679846 hasConceptScore W2183679846C126255220 @default.
- W2183679846 hasConceptScore W2183679846C127162648 @default.
- W2183679846 hasConceptScore W2183679846C127413603 @default.
- W2183679846 hasConceptScore W2183679846C132459708 @default.
- W2183679846 hasConceptScore W2183679846C134306372 @default.
- W2183679846 hasConceptScore W2183679846C146978453 @default.
- W2183679846 hasConceptScore W2183679846C162324750 @default.
- W2183679846 hasConceptScore W2183679846C185429906 @default.
- W2183679846 hasConceptScore W2183679846C2777303404 @default.
- W2183679846 hasConceptScore W2183679846C2781278361 @default.
- W2183679846 hasConceptScore W2183679846C28826006 @default.
- W2183679846 hasConceptScore W2183679846C31258907 @default.
- W2183679846 hasConceptScore W2183679846C33923547 @default.
- W2183679846 hasConceptScore W2183679846C39177556 @default.
- W2183679846 hasConceptScore W2183679846C41008148 @default.
- W2183679846 hasConceptScore W2183679846C50522688 @default.
- W2183679846 hasConceptScore W2183679846C57869625 @default.
- W2183679846 hasConceptScore W2183679846C73000952 @default.
- W2183679846 hasConceptScore W2183679846C84655787 @default.
- W2183679846 hasConceptScore W2183679846C93779851 @default.
- W2183679846 hasConceptScore W2183679846C97826883 @default.
- W2183679846 hasLocation W21836798461 @default.
- W2183679846 hasOpenAccess W2183679846 @default.
- W2183679846 hasPrimaryLocation W21836798461 @default.