Matches in SemOpenAlex for { <https://semopenalex.org/work/W2184041750> ?p ?o ?g. }
- W2184041750 abstract "A general framework is laid out for principal component analysis (PCA) on quotient spaces that result from an isometric Lie group action on a complete Riemannian manifold. If the quotient is a manifold, geodesics on the quotient can be lifted to horizontal geodesics on the original manifold. Thus, PCA on a mani- fold quotient can be pulled back to the original manifold. In general, however, the quotient space may no longer carry a manifold structure. Still, horizontal geodesics can be well-defined in the general case. This allows for the concept of generalized geodesics and orthogonal projection on the quotient space as the key ingredients for PCA. Generalizing a result of Bhattacharya and Patrangenaru (2003), geodesic scores can be defined outside a null set. Building on that, an algorithmic method to perform PCA on quotient spaces based on generalized geodesics is developed. As a typical example where non-manifold quotients appear, this framework is applied to Kendall's shape spaces. In fact, this work has been motivated by an application occurring in forest biometry where the current method of Euclidean linear approx- imation is unsuitable for performing PCA. This is illustrated by a data example of individual tree stems whose Kendall shapes fall into regions of high curvature of shape space: PCs obtained by Euclidean approximation fail to reflect between-data distances and thus cannot correctly explain data variation. Similarly, for a classical archeological data set with a large spread in shape space, geodesic PCA allows new insights that have not been available under PCA by Euclidean approximation. We conclude by reporting challenges, outlooks, and possible perspectives of intrinsic shape analysis." @default.
- W2184041750 created "2016-06-24" @default.
- W2184041750 creator A5019677811 @default.
- W2184041750 creator A5034800414 @default.
- W2184041750 creator A5059511088 @default.
- W2184041750 creator A5087767807 @default.
- W2184041750 date "2007-01-01" @default.
- W2184041750 modified "2023-09-27" @default.
- W2184041750 title "INTRINSIC SHAPE ANALYSIS: GEODESIC PCA FOR RIEMANNIAN MANIFOLDS MODULO ISOMETRIC LIE GROUP ACTIONS" @default.
- W2184041750 cites W117531481 @default.
- W2184041750 cites W1486210143 @default.
- W2184041750 cites W1515066108 @default.
- W2184041750 cites W1536988231 @default.
- W2184041750 cites W1555683961 @default.
- W2184041750 cites W1557179884 @default.
- W2184041750 cites W1560098816 @default.
- W2184041750 cites W1571578421 @default.
- W2184041750 cites W1587281004 @default.
- W2184041750 cites W1637741200 @default.
- W2184041750 cites W1771948080 @default.
- W2184041750 cites W1947363732 @default.
- W2184041750 cites W1968342053 @default.
- W2184041750 cites W1972721770 @default.
- W2184041750 cites W1973654654 @default.
- W2184041750 cites W1975613277 @default.
- W2184041750 cites W1978040199 @default.
- W2184041750 cites W1980318783 @default.
- W2184041750 cites W1985415289 @default.
- W2184041750 cites W1986265728 @default.
- W2184041750 cites W1992255091 @default.
- W2184041750 cites W1996440619 @default.
- W2184041750 cites W1996448267 @default.
- W2184041750 cites W2011861880 @default.
- W2184041750 cites W2013805643 @default.
- W2184041750 cites W2017449363 @default.
- W2184041750 cites W2023969170 @default.
- W2184041750 cites W2024254343 @default.
- W2184041750 cites W2032618685 @default.
- W2184041750 cites W2045512849 @default.
- W2184041750 cites W2047883355 @default.
- W2184041750 cites W2049114803 @default.
- W2184041750 cites W2051367194 @default.
- W2184041750 cites W2058286148 @default.
- W2184041750 cites W2059640215 @default.
- W2184041750 cites W2061700871 @default.
- W2184041750 cites W2062757192 @default.
- W2184041750 cites W2064061501 @default.
- W2184041750 cites W2067242766 @default.
- W2184041750 cites W2072931016 @default.
- W2184041750 cites W2074758297 @default.
- W2184041750 cites W2075206908 @default.
- W2184041750 cites W2076063084 @default.
- W2184041750 cites W2077246452 @default.
- W2184041750 cites W2077845414 @default.
- W2184041750 cites W2082695725 @default.
- W2184041750 cites W2084368593 @default.
- W2184041750 cites W2087219114 @default.
- W2184041750 cites W2087640086 @default.
- W2184041750 cites W2089465567 @default.
- W2184041750 cites W2089700743 @default.
- W2184041750 cites W2089846098 @default.
- W2184041750 cites W2091804476 @default.
- W2184041750 cites W2095800081 @default.
- W2184041750 cites W2101054411 @default.
- W2184041750 cites W2103975664 @default.
- W2184041750 cites W2108652807 @default.
- W2184041750 cites W2109409043 @default.
- W2184041750 cites W2114261252 @default.
- W2184041750 cites W2122538988 @default.
- W2184041750 cites W2123538828 @default.
- W2184041750 cites W2125949583 @default.
- W2184041750 cites W2128325826 @default.
- W2184041750 cites W2128705329 @default.
- W2184041750 cites W2131202198 @default.
- W2184041750 cites W2136111243 @default.
- W2184041750 cites W2140179791 @default.
- W2184041750 cites W2140286913 @default.
- W2184041750 cites W2140798815 @default.
- W2184041750 cites W2146932984 @default.
- W2184041750 cites W2152662353 @default.
- W2184041750 cites W2157876396 @default.
- W2184041750 cites W2163387321 @default.
- W2184041750 cites W2165918462 @default.
- W2184041750 cites W2166522594 @default.
- W2184041750 cites W2223353064 @default.
- W2184041750 cites W2307072262 @default.
- W2184041750 cites W2322332231 @default.
- W2184041750 cites W2402552909 @default.
- W2184041750 cites W2797466362 @default.
- W2184041750 cites W2964671781 @default.
- W2184041750 cites W3135593729 @default.
- W2184041750 cites W33507944 @default.
- W2184041750 cites W644788093 @default.
- W2184041750 cites W80519531 @default.
- W2184041750 cites W80837868 @default.
- W2184041750 cites W81377659 @default.
- W2184041750 cites W96440481 @default.
- W2184041750 cites W2166353270 @default.
- W2184041750 hasPublicationYear "2007" @default.
- W2184041750 type Work @default.