Matches in SemOpenAlex for { <https://semopenalex.org/work/W2184136339> ?p ?o ?g. }
- W2184136339 abstract "Author(s): Rabbani, Tarek | Advisor(s): El-Ghaoui, Laurent; Bayen, Alexandre | Abstract: In this thesis, we study two topics related to large-scale sparseestimation and control. In the first topic, we describe a method toeliminate features (variables) in $ell_{1}$-regularized convex optimizationproblems. The elimination of features leads to a potentially substantialreduction in computational effort needed to solve such problems, especiallyfor large values of the penalty parameter. Our method is not heuristic:it only eliminates features that are guaranteed to be absent aftersolving the optimization problem. The feature elimination step iseasy to parallelize and can test each feature for elimination independently.Moreover, the computational effort of our method is negligible comparedto that of solving the convex problem.We study the case of $ell_{1}$-regularized least-squares problem(a.k.a. LASSO) extensively and derive a closed-form sufficient conditionfor eliminating features. The sufficient condition can be evaluatedby few vector-matrix multiplications. For comparison purposes, wepresent a LASSO solver that integrates SAFE with the Coordinate Descentmethod. We call our method CD-SAFE, and we report the number of computationsneeded for solving a LASSO problem using CD-SAFE and using the plainCoordinate Descent method. We observe at least a $100$ fold reductionin computational complexity for dense and sparse data-sets consistingof millions of variables and millions of observations. Some of thesedata-sets can cause memory problems when loaded, or need specializedsolvers. However, with SAFE, we can extend LASSO solvers capabilitiesto treat large-scale problems, previously out of their reach. Thisis possible, because SAFE eliminates variables and thus portions ofour data at the outset, before loading it into our memory.We also show how our method can be extended to general $ell_{1}$-regularizedconvex problems. We present preliminary results for the Sparse SupportVector Machine and Logistic Regression problems.In the second topic of the thesis, we derive a method for open-loopcontrol of open channel flow, based on the Hayami model, a parabolicpartial differential equation resulting from a simplification of theSaint-Venant equations. The open-loop control is represented as infiniteseries using differential flatness, for which convergence is assessed.Numerical simulations show the effectiveness of the approach by applyingthe open-loop controller to irrigation canals modeled by the fullSaint-Venant equations. We experiment with our controller on the Gignac Canal, located northwestof Montpellier, in southern France. The experiments show that it ispossible to achieve a desired water flow at the downstream of a canalusing the Hayami model as an approximation of the real-system. However,our observations of the measured water flow at the upstream controlledgate made us realize some actuator limitations. For example, deadbandin the gate opening and unmodeled disturbances such as friction inthe gate-opening mechanism, only allow us to deliver piece-wise constantcontrol inputs. This fact made us investigate a way to compute a controllerthat respects the actuator limitations. We use the CD-SAFE algorithm,to compute such open-loop control for the upstream water flow. Wecompare the computational effort needed to obtain an open-loop controlwith certain dynamics using the CD-SAFE algorithm and the plain CoordinateDescent algoirthm. We show that with CD-SAFE we are able to obainan open-loop control signal with cheaper computations." @default.
- W2184136339 created "2016-06-24" @default.
- W2184136339 creator A5045356739 @default.
- W2184136339 date "2013-01-01" @default.
- W2184136339 modified "2023-09-27" @default.
- W2184136339 title "Topics in Large-Scale Sparse Estimation and Control" @default.
- W2184136339 cites W104504950 @default.
- W2184136339 cites W120308165 @default.
- W2184136339 cites W1498121547 @default.
- W2184136339 cites W1534230689 @default.
- W2184136339 cites W1578319302 @default.
- W2184136339 cites W1600967930 @default.
- W2184136339 cites W1647804983 @default.
- W2184136339 cites W1973496280 @default.
- W2184136339 cites W1983008863 @default.
- W2184136339 cites W1987233124 @default.
- W2184136339 cites W1988697047 @default.
- W2184136339 cites W2000758421 @default.
- W2184136339 cites W2006768845 @default.
- W2184136339 cites W2013995356 @default.
- W2184136339 cites W2016875721 @default.
- W2184136339 cites W2017068231 @default.
- W2184136339 cites W2020571138 @default.
- W2184136339 cites W2021834312 @default.
- W2184136339 cites W2027197817 @default.
- W2184136339 cites W2034647609 @default.
- W2184136339 cites W2063978378 @default.
- W2184136339 cites W2065297540 @default.
- W2184136339 cites W2067910889 @default.
- W2184136339 cites W2077275114 @default.
- W2184136339 cites W2078204800 @default.
- W2184136339 cites W2082009002 @default.
- W2184136339 cites W2090356070 @default.
- W2184136339 cites W2097360283 @default.
- W2184136339 cites W2098012923 @default.
- W2184136339 cites W2101095383 @default.
- W2184136339 cites W2101234009 @default.
- W2184136339 cites W2103333826 @default.
- W2184136339 cites W2114260068 @default.
- W2184136339 cites W2119058682 @default.
- W2184136339 cites W2121205584 @default.
- W2184136339 cites W2129048452 @default.
- W2184136339 cites W2130621829 @default.
- W2184136339 cites W2135046866 @default.
- W2184136339 cites W2135248049 @default.
- W2184136339 cites W2139410361 @default.
- W2184136339 cites W2139614938 @default.
- W2184136339 cites W2154560360 @default.
- W2184136339 cites W2158742425 @default.
- W2184136339 cites W2163885650 @default.
- W2184136339 cites W2169103656 @default.
- W2184136339 cites W2180995201 @default.
- W2184136339 cites W2296319761 @default.
- W2184136339 cites W25279699 @default.
- W2184136339 cites W2808304975 @default.
- W2184136339 cites W3022380717 @default.
- W2184136339 cites W3120740533 @default.
- W2184136339 cites W3142078155 @default.
- W2184136339 hasPublicationYear "2013" @default.
- W2184136339 type Work @default.
- W2184136339 sameAs 2184136339 @default.
- W2184136339 citedByCount "0" @default.
- W2184136339 crossrefType "journal-article" @default.
- W2184136339 hasAuthorship W2184136339A5045356739 @default.
- W2184136339 hasConcept C105795698 @default.
- W2184136339 hasConcept C112680207 @default.
- W2184136339 hasConcept C11413529 @default.
- W2184136339 hasConcept C121332964 @default.
- W2184136339 hasConcept C126255220 @default.
- W2184136339 hasConcept C136764020 @default.
- W2184136339 hasConcept C157553263 @default.
- W2184136339 hasConcept C157972887 @default.
- W2184136339 hasConcept C173801870 @default.
- W2184136339 hasConcept C179799912 @default.
- W2184136339 hasConcept C185429906 @default.
- W2184136339 hasConcept C2524010 @default.
- W2184136339 hasConcept C2778755073 @default.
- W2184136339 hasConcept C2778770139 @default.
- W2184136339 hasConcept C33923547 @default.
- W2184136339 hasConcept C37616216 @default.
- W2184136339 hasConcept C41008148 @default.
- W2184136339 hasConcept C62520636 @default.
- W2184136339 hasConcept C9936470 @default.
- W2184136339 hasConceptScore W2184136339C105795698 @default.
- W2184136339 hasConceptScore W2184136339C112680207 @default.
- W2184136339 hasConceptScore W2184136339C11413529 @default.
- W2184136339 hasConceptScore W2184136339C121332964 @default.
- W2184136339 hasConceptScore W2184136339C126255220 @default.
- W2184136339 hasConceptScore W2184136339C136764020 @default.
- W2184136339 hasConceptScore W2184136339C157553263 @default.
- W2184136339 hasConceptScore W2184136339C157972887 @default.
- W2184136339 hasConceptScore W2184136339C173801870 @default.
- W2184136339 hasConceptScore W2184136339C179799912 @default.
- W2184136339 hasConceptScore W2184136339C185429906 @default.
- W2184136339 hasConceptScore W2184136339C2524010 @default.
- W2184136339 hasConceptScore W2184136339C2778755073 @default.
- W2184136339 hasConceptScore W2184136339C2778770139 @default.
- W2184136339 hasConceptScore W2184136339C33923547 @default.
- W2184136339 hasConceptScore W2184136339C37616216 @default.
- W2184136339 hasConceptScore W2184136339C41008148 @default.