Matches in SemOpenAlex for { <https://semopenalex.org/work/W2184175513> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2184175513 abstract "Previous methods of clustering mainly uses matching key words of text, However it does not capture the meaning behind the words which is bad side of traditional method to mine the text. The paper is based on Semantic based approach for document cl ustering which is mainly based on semantic notations of text in documents. In the Semantic document clustering we can parse the web documents into two way, first is syntactically and second is semantically. Syntactical parsing can ignore the less important from documents so that we can have proper to pass into next step. Then in next step i.e. Semantic parsing can apply on the parsed syntactic which give can cluster the documents properly and give the needed response to user at the time of which is not accurately in traditional methods.Basically we are taking n number of IEEE papers from IEEE.org website as a dataset of web documents. Then we applied Semantic Clustering Algorithm, In first step of Syntactic parser gives the proper in the text file format by rem oving an useless from web documents of each IEEE paper. Then in next step these text files will be pass into semantic clustering, here we will get the membership value of each text file. So finally we will get clusters of text files which can be calculated by comparing its membership values with each other. Document Clustering by using semantics is a technique which is directly work on textual part of web documents in our database, there are very few technique present which are based on textual clustering. As searching space is small after clustering with semantic approach, we need very less time to search through billions of web pages or documents in fraction of seconds or less.All the experimental values are the result of two words data and mining from documents which go through semantic clustering." @default.
- W2184175513 created "2016-06-24" @default.
- W2184175513 creator A5011882879 @default.
- W2184175513 creator A5037483012 @default.
- W2184175513 date "2012-01-01" @default.
- W2184175513 modified "2023-09-27" @default.
- W2184175513 title "Document Clustering by using Semantics" @default.
- W2184175513 cites W2071180316 @default.
- W2184175513 cites W2096204386 @default.
- W2184175513 cites W2113076747 @default.
- W2184175513 cites W2129546202 @default.
- W2184175513 cites W2740954315 @default.
- W2184175513 hasPublicationYear "2012" @default.
- W2184175513 type Work @default.
- W2184175513 sameAs 2184175513 @default.
- W2184175513 citedByCount "0" @default.
- W2184175513 crossrefType "journal-article" @default.
- W2184175513 hasAuthorship W2184175513A5011882879 @default.
- W2184175513 hasAuthorship W2184175513A5037483012 @default.
- W2184175513 hasConcept C154945302 @default.
- W2184175513 hasConcept C177937566 @default.
- W2184175513 hasConcept C184337299 @default.
- W2184175513 hasConcept C186644900 @default.
- W2184175513 hasConcept C199360897 @default.
- W2184175513 hasConcept C204321447 @default.
- W2184175513 hasConcept C23123220 @default.
- W2184175513 hasConcept C41008148 @default.
- W2184175513 hasConcept C73555534 @default.
- W2184175513 hasConceptScore W2184175513C154945302 @default.
- W2184175513 hasConceptScore W2184175513C177937566 @default.
- W2184175513 hasConceptScore W2184175513C184337299 @default.
- W2184175513 hasConceptScore W2184175513C186644900 @default.
- W2184175513 hasConceptScore W2184175513C199360897 @default.
- W2184175513 hasConceptScore W2184175513C204321447 @default.
- W2184175513 hasConceptScore W2184175513C23123220 @default.
- W2184175513 hasConceptScore W2184175513C41008148 @default.
- W2184175513 hasConceptScore W2184175513C73555534 @default.
- W2184175513 hasLocation W21841755131 @default.
- W2184175513 hasOpenAccess W2184175513 @default.
- W2184175513 hasPrimaryLocation W21841755131 @default.
- W2184175513 hasRelatedWork W1498563609 @default.
- W2184175513 hasRelatedWork W1499420850 @default.
- W2184175513 hasRelatedWork W1500398261 @default.
- W2184175513 hasRelatedWork W1509381869 @default.
- W2184175513 hasRelatedWork W1590171573 @default.
- W2184175513 hasRelatedWork W1821844893 @default.
- W2184175513 hasRelatedWork W2001509567 @default.
- W2184175513 hasRelatedWork W2038102940 @default.
- W2184175513 hasRelatedWork W2061031592 @default.
- W2184175513 hasRelatedWork W2101005742 @default.
- W2184175513 hasRelatedWork W2130842336 @default.
- W2184175513 hasRelatedWork W2177553544 @default.
- W2184175513 hasRelatedWork W2183015420 @default.
- W2184175513 hasRelatedWork W2187337573 @default.
- W2184175513 hasRelatedWork W2315161676 @default.
- W2184175513 hasRelatedWork W2317328922 @default.
- W2184175513 hasRelatedWork W2925387597 @default.
- W2184175513 hasRelatedWork W2987947939 @default.
- W2184175513 hasRelatedWork W89027898 @default.
- W2184175513 hasRelatedWork W2551502740 @default.
- W2184175513 isParatext "false" @default.
- W2184175513 isRetracted "false" @default.
- W2184175513 magId "2184175513" @default.
- W2184175513 workType "article" @default.