Matches in SemOpenAlex for { <https://semopenalex.org/work/W2184328455> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2184328455 abstract "In this paper, we explore poset games, a large class of combinatorial games which includes Nim, Chomp, Hackendot, Subset-Takeaway, and others. We prove a general theorem about poset games, which we call the Poset Game Periodicity Theorem: as a poset expands along two chains, losing positions and positions with any fixed g-value have a periodic pattern. We use the theorem to (1) find polynomial-time winning strategies for a new, large class of poset games, (2) resolve two open conjectures about the game of Chomp, and (3) prove several important results about the computational complexity of calculating g-values in poset games. 1 Summary of Motivation I found poset games a particularly appealing topic for mathematics research for four reasons: (1) I was intrigued by the way that poset games with simple rules could have very complex structure; (2) the literature of poset games includes many problems that have long remained unsolved, which makes it an exciting area; (3) combinatorial game theory is relevant to a number of real-world problems, with particular applications in computer science and economics; and (4) finding a winning strategy to a combinatorial game is an especially tangible and satisfying result. 2 Introduction This paper analyzes a class of two-player games known as poset games. A poset (partiallyordered set) is a mathematical object satisfying a few simple properties, and any poset can be turned into a two-player game in a straightforward way. Poset games, like posets themselves, vary widely, and although a few specific types of poset games have been studied over the past hundred years, very few results are known about poset games in general. This paper offers a major new theorem about general poset games: as a poset expands in two directions, periodic patterns emerge in the associated poset game not only in losing positions, but also in positions with any fixed g-value (g-values are an important, general classification of game positions). Using this theorem, which we name the Poset Game Periodicity Theorem, we further prove several more specific results: (1) we resolve two open conjectures about a specific poset game called Chomp; (2) we prove several results about the computational complexity of calculating g-values in poset games; and (3) we give an efficient (i.e., polynomial-time) winning strategy for a large class of poset games. 2.1 Posets and Poset Games A partially-ordered set (poset) is a set X and a partial ordering of its elements — some elements are smaller than other elements, but not every pair of elements can necessarily be" @default.
- W2184328455 created "2016-06-24" @default.
- W2184328455 creator A5047886418 @default.
- W2184328455 date "2002-01-01" @default.
- W2184328455 modified "2023-09-27" @default.
- W2184328455 title "Poset-Game Periodicity" @default.
- W2184328455 cites W1968827036 @default.
- W2184328455 cites W2025535662 @default.
- W2184328455 cites W2087540330 @default.
- W2184328455 cites W2092587468 @default.
- W2184328455 cites W2314313724 @default.
- W2184328455 cites W2330301979 @default.
- W2184328455 cites W2894564506 @default.
- W2184328455 hasPublicationYear "2002" @default.
- W2184328455 type Work @default.
- W2184328455 sameAs 2184328455 @default.
- W2184328455 citedByCount "12" @default.
- W2184328455 countsByYear W21843284552012 @default.
- W2184328455 countsByYear W21843284552014 @default.
- W2184328455 countsByYear W21843284552015 @default.
- W2184328455 countsByYear W21843284552017 @default.
- W2184328455 countsByYear W21843284552022 @default.
- W2184328455 crossrefType "journal-article" @default.
- W2184328455 hasAuthorship W2184328455A5047886418 @default.
- W2184328455 hasConcept C102234262 @default.
- W2184328455 hasConcept C111472728 @default.
- W2184328455 hasConcept C114614502 @default.
- W2184328455 hasConcept C118615104 @default.
- W2184328455 hasConcept C138885662 @default.
- W2184328455 hasConcept C144237770 @default.
- W2184328455 hasConcept C154945302 @default.
- W2184328455 hasConcept C177142836 @default.
- W2184328455 hasConcept C177264268 @default.
- W2184328455 hasConcept C180645754 @default.
- W2184328455 hasConcept C199360897 @default.
- W2184328455 hasConcept C2777212361 @default.
- W2184328455 hasConcept C2780586882 @default.
- W2184328455 hasConcept C33923547 @default.
- W2184328455 hasConcept C41008148 @default.
- W2184328455 hasConcept C73795354 @default.
- W2184328455 hasConceptScore W2184328455C102234262 @default.
- W2184328455 hasConceptScore W2184328455C111472728 @default.
- W2184328455 hasConceptScore W2184328455C114614502 @default.
- W2184328455 hasConceptScore W2184328455C118615104 @default.
- W2184328455 hasConceptScore W2184328455C138885662 @default.
- W2184328455 hasConceptScore W2184328455C144237770 @default.
- W2184328455 hasConceptScore W2184328455C154945302 @default.
- W2184328455 hasConceptScore W2184328455C177142836 @default.
- W2184328455 hasConceptScore W2184328455C177264268 @default.
- W2184328455 hasConceptScore W2184328455C180645754 @default.
- W2184328455 hasConceptScore W2184328455C199360897 @default.
- W2184328455 hasConceptScore W2184328455C2777212361 @default.
- W2184328455 hasConceptScore W2184328455C2780586882 @default.
- W2184328455 hasConceptScore W2184328455C33923547 @default.
- W2184328455 hasConceptScore W2184328455C41008148 @default.
- W2184328455 hasConceptScore W2184328455C73795354 @default.
- W2184328455 hasLocation W21843284551 @default.
- W2184328455 hasOpenAccess W2184328455 @default.
- W2184328455 hasPrimaryLocation W21843284551 @default.
- W2184328455 hasRelatedWork W1518813574 @default.
- W2184328455 hasRelatedWork W1888449113 @default.
- W2184328455 hasRelatedWork W1983796355 @default.
- W2184328455 hasRelatedWork W2068378784 @default.
- W2184328455 hasRelatedWork W2087540330 @default.
- W2184328455 hasRelatedWork W2092587468 @default.
- W2184328455 hasRelatedWork W2160394654 @default.
- W2184328455 hasRelatedWork W2198002605 @default.
- W2184328455 hasRelatedWork W2261622378 @default.
- W2184328455 hasRelatedWork W2314313724 @default.
- W2184328455 hasRelatedWork W2330301979 @default.
- W2184328455 hasRelatedWork W2508891437 @default.
- W2184328455 hasRelatedWork W2547977190 @default.
- W2184328455 hasRelatedWork W2894564506 @default.
- W2184328455 hasRelatedWork W2897115502 @default.
- W2184328455 hasRelatedWork W2951331267 @default.
- W2184328455 hasRelatedWork W3101910935 @default.
- W2184328455 hasRelatedWork W3122689862 @default.
- W2184328455 hasRelatedWork W3125097583 @default.
- W2184328455 hasRelatedWork W1969140772 @default.
- W2184328455 isParatext "false" @default.
- W2184328455 isRetracted "false" @default.
- W2184328455 magId "2184328455" @default.
- W2184328455 workType "article" @default.