Matches in SemOpenAlex for { <https://semopenalex.org/work/W2184346317> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2184346317 abstract "Whilst Power Kripke-Platek set theory, KPP, shares many properties with ordinary Kripke-Platek set theory, KP, in several ways it behaves quite differently from KP. This is perhaps most strikingly demonstrated by a result, due to Mathias, to the effect that adding the axiom of constructibility to KPP gives rise to a much stronger theory, whereas in the case of KP the constructible hierarchy provides an inner model, so that KP and KP+V=L have the same strength. This paper will be concerned with the relationship between KPP and KPP plus the axiom of choice or even the global axiom of choice, GAC. Since L is the standard vehicle to furnish a model in which this axiom holds, the usual argument for demonstrating that the addition of AC or GAC to KPP does not increase proof-theoretic strength does not apply in any obvious way. Among other tools, the paper uses techniques from ordinal analysis to show that KPP+GAC has the same strength as KPP, thereby answering a question of Mathias. Moreover, it is shown that KPP+GAC is conservative over KPP for Pi-1-4 statements of analysis. The method of ordinal analysis for theories with power set was developed in an earlier paper. The technique allows one to compute witnessing information from infinitary proofs, providing bounds for the transfinite iterations of the power set operation that are provable in a theory. As the theory KPP+GAC provides a very useful tool for defining models and realizability models of other theories that are hard to construct without access to a uniform selection mechanism, it is desirable to determine its exact proof-theoretic strength. This knowledge can for instance be used to determine the strength of Feferman's operational set theory with power set operation as well as constructive Zermelo-Fraenkel set theory with the axiom of choice." @default.
- W2184346317 created "2016-06-24" @default.
- W2184346317 creator A5011325191 @default.
- W2184346317 date "2018-01-05" @default.
- W2184346317 modified "2023-09-27" @default.
- W2184346317 title "Power Kripke-Platek set theory and the axiom of choice" @default.
- W2184346317 cites W1536081785 @default.
- W2184346317 cites W171610189 @default.
- W2184346317 cites W195189594 @default.
- W2184346317 cites W2016079395 @default.
- W2184346317 cites W2027848313 @default.
- W2184346317 cites W2029926935 @default.
- W2184346317 cites W2052161854 @default.
- W2184346317 cites W2059656706 @default.
- W2184346317 cites W2064023341 @default.
- W2184346317 cites W2065837808 @default.
- W2184346317 cites W2067110264 @default.
- W2184346317 cites W2074842064 @default.
- W2184346317 cites W2079743999 @default.
- W2184346317 cites W2088408332 @default.
- W2184346317 cites W2091425612 @default.
- W2184346317 cites W2124711040 @default.
- W2184346317 cites W2144925863 @default.
- W2184346317 cites W2601545920 @default.
- W2184346317 cites W40029885 @default.
- W2184346317 cites W68230952 @default.
- W2184346317 hasPublicationYear "2018" @default.
- W2184346317 type Work @default.
- W2184346317 sameAs 2184346317 @default.
- W2184346317 citedByCount "0" @default.
- W2184346317 crossrefType "posted-content" @default.
- W2184346317 hasAuthorship W2184346317A5011325191 @default.
- W2184346317 hasConcept C100643331 @default.
- W2184346317 hasConcept C108710211 @default.
- W2184346317 hasConcept C118615104 @default.
- W2184346317 hasConcept C144237770 @default.
- W2184346317 hasConcept C147358099 @default.
- W2184346317 hasConcept C151797676 @default.
- W2184346317 hasConcept C153046414 @default.
- W2184346317 hasConcept C167729594 @default.
- W2184346317 hasConcept C177264268 @default.
- W2184346317 hasConcept C185592680 @default.
- W2184346317 hasConcept C199360897 @default.
- W2184346317 hasConcept C202444582 @default.
- W2184346317 hasConcept C2524010 @default.
- W2184346317 hasConcept C33923547 @default.
- W2184346317 hasConcept C41008148 @default.
- W2184346317 hasConcept C51460 @default.
- W2184346317 hasConcept C55493867 @default.
- W2184346317 hasConcept C78550038 @default.
- W2184346317 hasConcept C98184364 @default.
- W2184346317 hasConceptScore W2184346317C100643331 @default.
- W2184346317 hasConceptScore W2184346317C108710211 @default.
- W2184346317 hasConceptScore W2184346317C118615104 @default.
- W2184346317 hasConceptScore W2184346317C144237770 @default.
- W2184346317 hasConceptScore W2184346317C147358099 @default.
- W2184346317 hasConceptScore W2184346317C151797676 @default.
- W2184346317 hasConceptScore W2184346317C153046414 @default.
- W2184346317 hasConceptScore W2184346317C167729594 @default.
- W2184346317 hasConceptScore W2184346317C177264268 @default.
- W2184346317 hasConceptScore W2184346317C185592680 @default.
- W2184346317 hasConceptScore W2184346317C199360897 @default.
- W2184346317 hasConceptScore W2184346317C202444582 @default.
- W2184346317 hasConceptScore W2184346317C2524010 @default.
- W2184346317 hasConceptScore W2184346317C33923547 @default.
- W2184346317 hasConceptScore W2184346317C41008148 @default.
- W2184346317 hasConceptScore W2184346317C51460 @default.
- W2184346317 hasConceptScore W2184346317C55493867 @default.
- W2184346317 hasConceptScore W2184346317C78550038 @default.
- W2184346317 hasConceptScore W2184346317C98184364 @default.
- W2184346317 hasLocation W21843463171 @default.
- W2184346317 hasOpenAccess W2184346317 @default.
- W2184346317 hasPrimaryLocation W21843463171 @default.
- W2184346317 hasRelatedWork W1978094076 @default.
- W2184346317 hasRelatedWork W2005199052 @default.
- W2184346317 hasRelatedWork W2016079395 @default.
- W2184346317 hasRelatedWork W2024836736 @default.
- W2184346317 hasRelatedWork W2050939025 @default.
- W2184346317 hasRelatedWork W2061386991 @default.
- W2184346317 hasRelatedWork W2065894311 @default.
- W2184346317 hasRelatedWork W2066572550 @default.
- W2184346317 hasRelatedWork W2091425612 @default.
- W2184346317 hasRelatedWork W2101453321 @default.
- W2184346317 hasRelatedWork W2102375029 @default.
- W2184346317 hasRelatedWork W2114912177 @default.
- W2184346317 hasRelatedWork W2140995860 @default.
- W2184346317 hasRelatedWork W2144925863 @default.
- W2184346317 hasRelatedWork W2296270830 @default.
- W2184346317 hasRelatedWork W2766279352 @default.
- W2184346317 hasRelatedWork W2794983383 @default.
- W2184346317 hasRelatedWork W2951533746 @default.
- W2184346317 hasRelatedWork W2971620993 @default.
- W2184346317 hasRelatedWork W3016872681 @default.
- W2184346317 isParatext "false" @default.
- W2184346317 isRetracted "false" @default.
- W2184346317 magId "2184346317" @default.
- W2184346317 workType "article" @default.