Matches in SemOpenAlex for { <https://semopenalex.org/work/W2184423657> ?p ?o ?g. }
- W2184423657 endingPage "514" @default.
- W2184423657 startingPage "505" @default.
- W2184423657 abstract "Two types of spatial regression models, a spatial lag model (SLM) and a spatial error model (SEM), were applied to fit the height-diameter relationship of trees. SEM had better model fitting and performance than both SLM and ordinary least squares. Moran's I coefficients showed that SEM effectively reduced the spatial autocorrelation in the model residuals. Both real data and Monte Carlo simulations were used to compare different parameter estimation methods for the two spatial regression models, including maximum likelihood estimation (MLE), Bayesian methods, two-stage least squares (for SLM) and generalized method of moments (GMM) (for SEM). Our results indicated that GMM was close to MLE in terms of model fitting, much easier in computation, and robust to non-normality and outliers. The Bayesian method with heteroscedasticity did not effectively estimate the spatial autoregressive parameters but produced very small biases for the regression coefficients of the model when few outliers existed. FOR .S CI. 56(5):505-514." @default.
- W2184423657 created "2016-06-24" @default.
- W2184423657 creator A5035848394 @default.
- W2184423657 creator A5071971878 @default.
- W2184423657 date "2010-10-01" @default.
- W2184423657 modified "2023-09-27" @default.
- W2184423657 title "Evaluation of parameter estimation methods for fitting spatial regression models." @default.
- W2184423657 cites W1486960811 @default.
- W2184423657 cites W1766029576 @default.
- W2184423657 cites W1973204773 @default.
- W2184423657 cites W1976759897 @default.
- W2184423657 cites W1977414200 @default.
- W2184423657 cites W1980267104 @default.
- W2184423657 cites W1981145803 @default.
- W2184423657 cites W1984205978 @default.
- W2184423657 cites W1985726068 @default.
- W2184423657 cites W1999435495 @default.
- W2184423657 cites W2038087971 @default.
- W2184423657 cites W2042812801 @default.
- W2184423657 cites W2064135328 @default.
- W2184423657 cites W2073535069 @default.
- W2184423657 cites W2079321251 @default.
- W2184423657 cites W2084958926 @default.
- W2184423657 cites W2089430585 @default.
- W2184423657 cites W2089792340 @default.
- W2184423657 cites W2106631101 @default.
- W2184423657 cites W2108495858 @default.
- W2184423657 cites W2111872234 @default.
- W2184423657 cites W2114220616 @default.
- W2184423657 cites W2117420831 @default.
- W2184423657 cites W2120978845 @default.
- W2184423657 cites W2125214271 @default.
- W2184423657 cites W2136644545 @default.
- W2184423657 cites W2142748250 @default.
- W2184423657 cites W2144751663 @default.
- W2184423657 cites W2155475871 @default.
- W2184423657 cites W2159294087 @default.
- W2184423657 cites W2161206953 @default.
- W2184423657 cites W2166856702 @default.
- W2184423657 cites W2169806208 @default.
- W2184423657 cites W2171646358 @default.
- W2184423657 cites W2194771473 @default.
- W2184423657 cites W2300758274 @default.
- W2184423657 cites W2315978962 @default.
- W2184423657 doi "https://doi.org/10.1093/forestscience/56.5.505" @default.
- W2184423657 hasPublicationYear "2010" @default.
- W2184423657 type Work @default.
- W2184423657 sameAs 2184423657 @default.
- W2184423657 citedByCount "3" @default.
- W2184423657 countsByYear W21844236572013 @default.
- W2184423657 countsByYear W21844236572016 @default.
- W2184423657 crossrefType "journal-article" @default.
- W2184423657 hasAuthorship W2184423657A5035848394 @default.
- W2184423657 hasAuthorship W2184423657A5071971878 @default.
- W2184423657 hasConcept C101104100 @default.
- W2184423657 hasConcept C105795698 @default.
- W2184423657 hasConcept C152877465 @default.
- W2184423657 hasConcept C159620131 @default.
- W2184423657 hasConcept C159877910 @default.
- W2184423657 hasConcept C168136583 @default.
- W2184423657 hasConcept C19499675 @default.
- W2184423657 hasConcept C33923547 @default.
- W2184423657 hasConcept C70259352 @default.
- W2184423657 hasConcept C79337645 @default.
- W2184423657 hasConcept C99656134 @default.
- W2184423657 hasConceptScore W2184423657C101104100 @default.
- W2184423657 hasConceptScore W2184423657C105795698 @default.
- W2184423657 hasConceptScore W2184423657C152877465 @default.
- W2184423657 hasConceptScore W2184423657C159620131 @default.
- W2184423657 hasConceptScore W2184423657C159877910 @default.
- W2184423657 hasConceptScore W2184423657C168136583 @default.
- W2184423657 hasConceptScore W2184423657C19499675 @default.
- W2184423657 hasConceptScore W2184423657C33923547 @default.
- W2184423657 hasConceptScore W2184423657C70259352 @default.
- W2184423657 hasConceptScore W2184423657C79337645 @default.
- W2184423657 hasConceptScore W2184423657C99656134 @default.
- W2184423657 hasIssue "5" @default.
- W2184423657 hasLocation W21844236571 @default.
- W2184423657 hasOpenAccess W2184423657 @default.
- W2184423657 hasPrimaryLocation W21844236571 @default.
- W2184423657 hasRelatedWork W1579180320 @default.
- W2184423657 hasRelatedWork W1987165628 @default.
- W2184423657 hasRelatedWork W200203781 @default.
- W2184423657 hasRelatedWork W2004104751 @default.
- W2184423657 hasRelatedWork W2008018325 @default.
- W2184423657 hasRelatedWork W2009997010 @default.
- W2184423657 hasRelatedWork W2019752585 @default.
- W2184423657 hasRelatedWork W2024424774 @default.
- W2184423657 hasRelatedWork W2075887536 @default.
- W2184423657 hasRelatedWork W2111547237 @default.
- W2184423657 hasRelatedWork W2167995267 @default.
- W2184423657 hasRelatedWork W232088664 @default.
- W2184423657 hasRelatedWork W246108356 @default.
- W2184423657 hasRelatedWork W2550169123 @default.
- W2184423657 hasRelatedWork W2591617062 @default.
- W2184423657 hasRelatedWork W2794328589 @default.
- W2184423657 hasRelatedWork W2984018764 @default.
- W2184423657 hasRelatedWork W3173834301 @default.