Matches in SemOpenAlex for { <https://semopenalex.org/work/W2184502093> ?p ?o ?g. }
- W2184502093 abstract "People with chronic musculoskeletal pain would benefit from technology that provides run-time personalized feedback and help adjust their physical exercise plan. However, increased pain during physical exercise, or anxiety about anticipated pain increase, may lead to setback and intensified sensitivity to pain. Our study investigates the possibility of detecting pain levels from the quality of body movement during two functional physical exercises. By analyzing recordings of kinematics and muscle activity, our feature optimization algorithms and machine learning techniques can automatically discriminate between people with low level pain and high level pain and control participants while exercising. Best results were obtained from feature set optimization algorithms: 94% and 80% for the full trunk flexion and sit-to-stand movements respectively using Support Vector Machines. As depression can affect pain experience, we included participants' depression scores on a standard questionnaire and this improved discrimination between the control participants and the people with pain when Random Forests were used." @default.
- W2184502093 created "2016-06-24" @default.
- W2184502093 creator A5005187038 @default.
- W2184502093 creator A5013594231 @default.
- W2184502093 creator A5036819859 @default.
- W2184502093 creator A5072897829 @default.
- W2184502093 date "2015-09-01" @default.
- W2184502093 modified "2023-10-15" @default.
- W2184502093 title "Pain level recognition using kinematics and muscle activity for physical rehabilitation in chronic pain" @default.
- W2184502093 cites W1523989055 @default.
- W2184502093 cites W1964074910 @default.
- W2184502093 cites W1964709965 @default.
- W2184502093 cites W1968783756 @default.
- W2184502093 cites W1970680563 @default.
- W2184502093 cites W1977897777 @default.
- W2184502093 cites W1978963692 @default.
- W2184502093 cites W1984687427 @default.
- W2184502093 cites W1985765492 @default.
- W2184502093 cites W1987903471 @default.
- W2184502093 cites W1990682957 @default.
- W2184502093 cites W1996479851 @default.
- W2184502093 cites W2026371421 @default.
- W2184502093 cites W2027022038 @default.
- W2184502093 cites W2027418022 @default.
- W2184502093 cites W2033147270 @default.
- W2184502093 cites W2058964641 @default.
- W2184502093 cites W2064574537 @default.
- W2184502093 cites W2085341951 @default.
- W2184502093 cites W2085636281 @default.
- W2184502093 cites W2095921734 @default.
- W2184502093 cites W2098615198 @default.
- W2184502093 cites W2099093791 @default.
- W2184502093 cites W2101545465 @default.
- W2184502093 cites W2102955128 @default.
- W2184502093 cites W2120795002 @default.
- W2184502093 cites W2127146544 @default.
- W2184502093 cites W2134237515 @default.
- W2184502093 cites W2140269806 @default.
- W2184502093 cites W2141610063 @default.
- W2184502093 cites W2147496707 @default.
- W2184502093 cites W2149447901 @default.
- W2184502093 cites W2151292517 @default.
- W2184502093 cites W2161506337 @default.
- W2184502093 cites W2162051211 @default.
- W2184502093 cites W2163444123 @default.
- W2184502093 cites W2166281097 @default.
- W2184502093 cites W2167613032 @default.
- W2184502093 cites W2283562276 @default.
- W2184502093 cites W2302184280 @default.
- W2184502093 cites W2911964244 @default.
- W2184502093 cites W3068839998 @default.
- W2184502093 cites W4233212795 @default.
- W2184502093 doi "https://doi.org/10.1109/acii.2015.7344578" @default.
- W2184502093 hasPublicationYear "2015" @default.
- W2184502093 type Work @default.
- W2184502093 sameAs 2184502093 @default.
- W2184502093 citedByCount "45" @default.
- W2184502093 countsByYear W21845020932016 @default.
- W2184502093 countsByYear W21845020932017 @default.
- W2184502093 countsByYear W21845020932019 @default.
- W2184502093 countsByYear W21845020932020 @default.
- W2184502093 countsByYear W21845020932021 @default.
- W2184502093 countsByYear W21845020932022 @default.
- W2184502093 countsByYear W21845020932023 @default.
- W2184502093 crossrefType "proceedings-article" @default.
- W2184502093 hasAuthorship W2184502093A5005187038 @default.
- W2184502093 hasAuthorship W2184502093A5013594231 @default.
- W2184502093 hasAuthorship W2184502093A5036819859 @default.
- W2184502093 hasAuthorship W2184502093A5072897829 @default.
- W2184502093 hasBestOaLocation W21845020932 @default.
- W2184502093 hasConcept C112143881 @default.
- W2184502093 hasConcept C118552586 @default.
- W2184502093 hasConcept C121332964 @default.
- W2184502093 hasConcept C138885662 @default.
- W2184502093 hasConcept C154945302 @default.
- W2184502093 hasConcept C15744967 @default.
- W2184502093 hasConcept C1862650 @default.
- W2184502093 hasConcept C18903297 @default.
- W2184502093 hasConcept C2776035688 @default.
- W2184502093 hasConcept C2776401178 @default.
- W2184502093 hasConcept C2778818304 @default.
- W2184502093 hasConcept C2781118164 @default.
- W2184502093 hasConcept C2781197403 @default.
- W2184502093 hasConcept C39920418 @default.
- W2184502093 hasConcept C41008148 @default.
- W2184502093 hasConcept C41895202 @default.
- W2184502093 hasConcept C46312422 @default.
- W2184502093 hasConcept C558461103 @default.
- W2184502093 hasConcept C71924100 @default.
- W2184502093 hasConcept C74650414 @default.
- W2184502093 hasConcept C86803240 @default.
- W2184502093 hasConcept C99508421 @default.
- W2184502093 hasConceptScore W2184502093C112143881 @default.
- W2184502093 hasConceptScore W2184502093C118552586 @default.
- W2184502093 hasConceptScore W2184502093C121332964 @default.
- W2184502093 hasConceptScore W2184502093C138885662 @default.
- W2184502093 hasConceptScore W2184502093C154945302 @default.
- W2184502093 hasConceptScore W2184502093C15744967 @default.
- W2184502093 hasConceptScore W2184502093C1862650 @default.
- W2184502093 hasConceptScore W2184502093C18903297 @default.