Matches in SemOpenAlex for { <https://semopenalex.org/work/W2185769393> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2185769393 abstract "Last lecture motivated the need for a model of data to gain insight into the relative merits of different online paging algorithms. In this lecture and the next, we explore models of data for clustering and graph partitioning problems. We cover deterministic data models in this lecture, and probabilistic ones in the next. In some optimization problems, the objective function can be taken quite literally. If one wants to maximize profit or accomplish some goal at minimum cost, then the goal translates directly into a numerical objective function. In other applications, an objective function is only means to an end. Consider, for example, the problem of clustering. Given a set of data points, the goal is to cluster them into “coherent groups”, with points in the same group being “similar” and those in different groups being “dissimilar”. There is not an obvious unique way to translate this goal into a numerical objective function, and as a result many different objective functions have been studied (k-means, k-median, k-center, etc.) with the intent of making the fuzzy notion of a “good/meaningful clustering” into a concrete optimization problem. In this case, we do not care about an “optimal solution” per se; rather, we want to uncover interesting structure in the data. So we’re perfectly happy to compute a “meaningful clustering” with suboptimal objective function value; and highly dissatisfied with an “optimal solution” that fails to indicate any patterns in the data (which suggests that we were asking the wrong question or expecting structure where none exists). The point is that if we are trying to cluster a data set, then we are implicitly assuming" @default.
- W2185769393 created "2016-06-24" @default.
- W2185769393 creator A5022886322 @default.
- W2185769393 date "2010-01-01" @default.
- W2185769393 modified "2023-09-27" @default.
- W2185769393 title "CS369N: Beyond Worst-Case Analysis Lecture #3: Deterministic Planted Models for Clustering and Graph Partitioning ∗" @default.
- W2185769393 cites W1535669030 @default.
- W2185769393 cites W1985123706 @default.
- W2185769393 cites W1999032440 @default.
- W2185769393 cites W2003207175 @default.
- W2185769393 cites W2101622070 @default.
- W2185769393 cites W2146489710 @default.
- W2185769393 cites W2399797399 @default.
- W2185769393 hasPublicationYear "2010" @default.
- W2185769393 type Work @default.
- W2185769393 sameAs 2185769393 @default.
- W2185769393 citedByCount "0" @default.
- W2185769393 crossrefType "journal-article" @default.
- W2185769393 hasAuthorship W2185769393A5022886322 @default.
- W2185769393 hasConcept C119857082 @default.
- W2185769393 hasConcept C124101348 @default.
- W2185769393 hasConcept C126255220 @default.
- W2185769393 hasConcept C154945302 @default.
- W2185769393 hasConcept C17212007 @default.
- W2185769393 hasConcept C27964816 @default.
- W2185769393 hasConcept C33704608 @default.
- W2185769393 hasConcept C33923547 @default.
- W2185769393 hasConcept C41008148 @default.
- W2185769393 hasConcept C49937458 @default.
- W2185769393 hasConcept C73555534 @default.
- W2185769393 hasConcept C80444323 @default.
- W2185769393 hasConceptScore W2185769393C119857082 @default.
- W2185769393 hasConceptScore W2185769393C124101348 @default.
- W2185769393 hasConceptScore W2185769393C126255220 @default.
- W2185769393 hasConceptScore W2185769393C154945302 @default.
- W2185769393 hasConceptScore W2185769393C17212007 @default.
- W2185769393 hasConceptScore W2185769393C27964816 @default.
- W2185769393 hasConceptScore W2185769393C33704608 @default.
- W2185769393 hasConceptScore W2185769393C33923547 @default.
- W2185769393 hasConceptScore W2185769393C41008148 @default.
- W2185769393 hasConceptScore W2185769393C49937458 @default.
- W2185769393 hasConceptScore W2185769393C73555534 @default.
- W2185769393 hasConceptScore W2185769393C80444323 @default.
- W2185769393 hasLocation W21857693931 @default.
- W2185769393 hasOpenAccess W2185769393 @default.
- W2185769393 hasPrimaryLocation W21857693931 @default.
- W2185769393 hasRelatedWork W1502311709 @default.
- W2185769393 hasRelatedWork W1541327651 @default.
- W2185769393 hasRelatedWork W2028757431 @default.
- W2185769393 hasRelatedWork W2088051021 @default.
- W2185769393 hasRelatedWork W2282454402 @default.
- W2185769393 hasRelatedWork W231174272 @default.
- W2185769393 hasRelatedWork W2562068195 @default.
- W2185769393 hasRelatedWork W2578643323 @default.
- W2185769393 hasRelatedWork W2680592180 @default.
- W2185769393 hasRelatedWork W2766307072 @default.
- W2185769393 hasRelatedWork W2899173741 @default.
- W2185769393 hasRelatedWork W2949822670 @default.
- W2185769393 hasRelatedWork W2950310647 @default.
- W2185769393 hasRelatedWork W2989420398 @default.
- W2185769393 hasRelatedWork W2990874390 @default.
- W2185769393 hasRelatedWork W3042080832 @default.
- W2185769393 hasRelatedWork W3108439876 @default.
- W2185769393 hasRelatedWork W3157651337 @default.
- W2185769393 hasRelatedWork W3161026078 @default.
- W2185769393 hasRelatedWork W47699104 @default.
- W2185769393 isParatext "false" @default.
- W2185769393 isRetracted "false" @default.
- W2185769393 magId "2185769393" @default.
- W2185769393 workType "article" @default.