Matches in SemOpenAlex for { <https://semopenalex.org/work/W2185902968> ?p ?o ?g. }
- W2185902968 abstract "Learning, inference, and prediction in the presence of missing data are pervasive problems in machine learning and statistical data analysis. This thesis focuses on the problems of collaborative prediction with non-random missing data and classification with missing features. We begin by presenting and elaborating on the theory of missing data due to Little and Rubin. We place a particular emphasis on the missing at random assumption in the multivariate setting with arbitrary patterns of missing data. We derive inference and prediction methods in the presence of random missing data for a variety of probabilistic models including finite mixture models, Dirichlet process mixture models, and factor analysis. Based on this foundation, we develop several novel models and inference procedures for both the collaborative prediction problem and the problem of classification with missing features. We develop models and methods for collaborative prediction with non-random missing data by combining standard models for complete data with models of the missing data process. Using a novel recommender system data set and experimental protocol, we show that each proposed method achieves a substantial increase in rating prediction performance compared to models that assume missing ratings are missing at random. We describe several strategies for classification with missing features including the use of generative classifiers, and the combination of standard discriminative classifiers with single imputation, multiple imputation, classification in subspaces, and an approach based on modifying the classifier input representation to include response indicators. Results on real and synthetic data sets show that in some cases performance gains over baseline methods can be achieved by methods that do not learn a detailed model of the feature space." @default.
- W2185902968 created "2016-06-24" @default.
- W2185902968 creator A5023142437 @default.
- W2185902968 date "2008-01-01" @default.
- W2185902968 modified "2023-09-26" @default.
- W2185902968 title "Missing data problems in machine learning" @default.
- W2185902968 cites W136535678 @default.
- W2185902968 cites W1480376833 @default.
- W2185902968 cites W1550443206 @default.
- W2185902968 cites W1554663460 @default.
- W2185902968 cites W1587670653 @default.
- W2185902968 cites W1662191912 @default.
- W2185902968 cites W1718512272 @default.
- W2185902968 cites W1813659000 @default.
- W2185902968 cites W1866403196 @default.
- W2185902968 cites W1967921672 @default.
- W2185902968 cites W1973948212 @default.
- W2185902968 cites W1979711143 @default.
- W2185902968 cites W1983599491 @default.
- W2185902968 cites W1985419027 @default.
- W2185902968 cites W1988790447 @default.
- W2185902968 cites W1998332407 @default.
- W2185902968 cites W1998590337 @default.
- W2185902968 cites W2001619934 @default.
- W2185902968 cites W2002017107 @default.
- W2185902968 cites W2003618197 @default.
- W2185902968 cites W2004915807 @default.
- W2185902968 cites W2005363197 @default.
- W2185902968 cites W2027197817 @default.
- W2185902968 cites W2029949252 @default.
- W2185902968 cites W2040870580 @default.
- W2185902968 cites W2043182541 @default.
- W2185902968 cites W2044758663 @default.
- W2185902968 cites W2045656233 @default.
- W2185902968 cites W2046649434 @default.
- W2185902968 cites W2047028564 @default.
- W2185902968 cites W2049633694 @default.
- W2185902968 cites W2069429561 @default.
- W2185902968 cites W2070272652 @default.
- W2185902968 cites W2070786785 @default.
- W2185902968 cites W2080972498 @default.
- W2185902968 cites W2082102453 @default.
- W2185902968 cites W2083875149 @default.
- W2185902968 cites W2084840427 @default.
- W2185902968 cites W2085937320 @default.
- W2185902968 cites W2094685358 @default.
- W2185902968 cites W2099866409 @default.
- W2185902968 cites W2100206501 @default.
- W2185902968 cites W2100358124 @default.
- W2185902968 cites W2107784689 @default.
- W2185902968 cites W2110325612 @default.
- W2185902968 cites W2112081648 @default.
- W2185902968 cites W2112796928 @default.
- W2185902968 cites W2114309103 @default.
- W2185902968 cites W2116053666 @default.
- W2185902968 cites W2116064496 @default.
- W2185902968 cites W2117354486 @default.
- W2185902968 cites W2118036030 @default.
- W2185902968 cites W2118079529 @default.
- W2185902968 cites W2119384858 @default.
- W2185902968 cites W2125027820 @default.
- W2185902968 cites W2128221272 @default.
- W2185902968 cites W2128884519 @default.
- W2185902968 cites W2129476886 @default.
- W2185902968 cites W2135046866 @default.
- W2185902968 cites W2137944862 @default.
- W2185902968 cites W2138145347 @default.
- W2185902968 cites W2139212933 @default.
- W2185902968 cites W2146610201 @default.
- W2185902968 cites W2151531457 @default.
- W2185902968 cites W2156909104 @default.
- W2185902968 cites W2169038197 @default.
- W2185902968 cites W2398915477 @default.
- W2185902968 cites W2501777234 @default.
- W2185902968 cites W263845233 @default.
- W2185902968 cites W3023786531 @default.
- W2185902968 cites W3029645440 @default.
- W2185902968 cites W3099514962 @default.
- W2185902968 cites W3140968660 @default.
- W2185902968 cites W740415 @default.
- W2185902968 hasPublicationYear "2008" @default.
- W2185902968 type Work @default.
- W2185902968 sameAs 2185902968 @default.
- W2185902968 citedByCount "45" @default.
- W2185902968 countsByYear W21859029682012 @default.
- W2185902968 countsByYear W21859029682013 @default.
- W2185902968 countsByYear W21859029682014 @default.
- W2185902968 countsByYear W21859029682015 @default.
- W2185902968 countsByYear W21859029682016 @default.
- W2185902968 countsByYear W21859029682017 @default.
- W2185902968 countsByYear W21859029682018 @default.
- W2185902968 countsByYear W21859029682020 @default.
- W2185902968 countsByYear W21859029682021 @default.
- W2185902968 crossrefType "dissertation" @default.
- W2185902968 hasAuthorship W2185902968A5023142437 @default.
- W2185902968 hasConcept C119857082 @default.
- W2185902968 hasConcept C124101348 @default.
- W2185902968 hasConcept C154945302 @default.
- W2185902968 hasConcept C169258074 @default.
- W2185902968 hasConcept C2776214188 @default.